Собственная компенсация шумов источника опорного напряжения в непрерывных компенсационных стабилизаторах

Н.Н. Прокопенко¹, А.С. Будяков², П.С. Будяков¹

¹ФГБОУ ВПО «ЮРГУЭС», г. Шахты Ростовской обл.

²ФГУП НПП «Пульсар», г. Москва

В современной микроэлектронике широкое применение получили непрерывные стабилизаторы напряжения (CH) [1, 2], которые стали основой многих серийных микросхем (HMC976LP3E, LP3999, ADP221, LTC1844, LTC1844 и др.). Существенный недостаток таких CH состоит в том, что для уменьшения уровня выходных шумов, обусловленных источником опорного напряжения, приходится применять конденсаторы большой емкости, шунтирующие низкоомный выход CH и его нагрузку. Это не позволяет создавать непрерывные CH, обеспечивающие электропитанием транзисторные узлы «систем на кристалле» (CнK), реализуемые по многим перспективным технологическим процессам.

В настоящей работе рассматриваются структуры стабилизаторов, обладающих эффектом собственной компенсации шумов источника опорного напряжения при сравнительно малых значениях емкостей используемых конденсаторов.

На рис. 1а показан метод выделения шумовой составляющей $(u_{\rm m})$ источника опорного напряжения *VD*1, который может быть выполнен, например, по классическим схемам Видлара или в виде традиционного стабилитрона:

$$U_{\rm cr}\left(t\right) = U_{\rm cr} + u_{\rm III} \tag{1}$$

где U_{ct} – постоянная составляющая напряжения на источнике опорного напряжения VD1;

 $u_{\rm m} \ll U_{\rm cr}$ - некоторое переменное напряжение, связанное с наличием шумов, различных помех, наводок и т.п. на источнике опорного напряжения *VD*1 (ИОН).

Рис. 1 Метод выделения «шумовой» составляющей источников опорного напряжения (а) и классическая схема компенсационного СН (б)

В классической схеме стабилизатора (рис. 1б) выходное напряжение $u_{\text{вых}}(t)$ связано с напряжением $U_{\text{ст}}(t)$ на источнике опорного напряжения известным соотношением

$$u_{\rm Bbix}(t) = \frac{U_{\rm cr}(t) \cdot \beta_{\rm oc}^{-1}}{1 + \frac{1}{T}},$$
(2)

где $\beta_{\rm oc}^{-1} = 1 + \frac{R_1}{R_2}$ - коэффициент передачи резистивного делителя напряжения;

T – петлевое усиление стабилизатора.

Причем:

$$T = \frac{R_{\text{H.3KB}}(K_{i1} + K_{i2})}{h_{11,1} + h_{11,2}} \beta_{\text{oc}}, \qquad (3)$$

где $R_{\text{H.3KB}}$ – эквивалентное сопротивление цепи нагрузки на выходе CH (Вых);

*K*_{*i*1}, *K*_{*i*2} – коэффициенты передачи по току регулирующего элемента РЭ по первому инвертирующему и второму неинвертирующему входам;

 $h_{11.1}=h_{11.2}$ – h-параметры транзисторов VT1 и VT2 в схеме с общей базой ($h_{11.1}=h_{11.2}=20\div50$ Ом).

Если T>>1, что обеспечивается K_{i1}>>1, K_{i2}>>1 [3, 4, 5], то

$$u_{\rm BbIX}(t) \approx U_{\rm ct}(t) \left(1 + \frac{R_1}{R_2}\right).$$
 (4)

Следовательно, в первом приближении переменная (шумовая) составляющая выходного напряжения СН рис. 16 в N_1 -раз больше, чем напряжение шумов $u_{\rm m}$ источника опорного напряжения, где

$$N_1 = 1 + \frac{R_1}{R_2} \ge 1.$$
 (5)

Для уменьшения напряжения шумов на выходе CH рис. 16, как правило, вводится корректирующая емкость C1, эквивалентная постоянная времени которой

$$\tau_1 \approx C_1 \frac{R_{\text{H.3KB}}}{1+T},\tag{6}$$

Как следует из (6), для получения больших значений τ_1 , т.е. эффективного подавления низкочастотных помех и шумов, приходится выбирать достаточно большие значения емкости конденсатора C1, так как $R_{\text{H.ЭKB}}(1+T)^{-1} \rightarrow 0$. Во многих случаях это неприемлемо, так как из-за существенных геометрических размеров конденсатора C1 он не всегда может располагаться на подложке «системы на кристалле» и/или « системы в корпусе».

На рисунке 2 представлены архитектуры цепей собственной компенсации шумов ИОН с интегрирующим (а) и дифференцирующим (б) RC-фильтрами.

Рис. 2 Методы собственной компенсации шума источника опорного напряжения с интегрирующим (а) и дифференцирующим (б) RC-фильтром

Будем считать, что постоянная времени конденсатора C1 в схеме рис. 2а выбрана такой, что в анализируемом частотном диапазоне шумов (помех, наводок) напряжение $u_{\rm m}^*$ между входами дифференциального усилителя ДУ2 равно напряжению шумов $u_{\rm m}$ между

входами усилителя сигнала рассогласования ДУ1, т.е. $u_{uu}^* \approx u_{uu}$. В этом случае входные токи i_1 и i_2 регулирующего элемента (РЭ):

$$i_1 = i_{\kappa 1} - i_{\kappa 4},$$
 (7)

$$i_2 = i_{\kappa 2} - i_{\kappa 3},$$
 (8)

где

$$i_{\kappa 1} = i_{\kappa 2} = \frac{u_{\rm m}}{h_{11.1} + h_{11.2}},\tag{9}$$

$$i_{\rm K3} = i_{\rm K4} = \frac{u_{\rm III}^*}{h_{11,3} + h_{11,4}} \,. \tag{10}$$

Если обеспечить равенства $h_{11.1} = h_{11.2} = h_{11.3} = h_{11.4}$, то на входах 1 и 2 и, следовательно, на выходе СН будет отсутствовать переменное напряжение шума, связанное с шумом источника опорного напряжения ИОН. В то же время для постоянной составляющей выходного напряжения СН справедливо уравнение

$$U_{\rm BMX} = U_{\rm ct} \left(1 + \frac{R_1}{R_2} \right), \tag{11}$$

так как дополнительный усилитель ДУ1 не влияет на работу схемы в статическом режиме.

На рис. 3 показаны результаты моделирования схемы рис. 2а в САПР Cadence Virtuoso на моделях 0,6 мкм БиКМОП техпроцесса XB06 фирмы «X-Fab».

Рис. 3 Коэффициент передачи шума схемы рис. 2а от источника опорного напряжения на выход при различных емкостях С1

Была снята зависимость коэффициента передачи шума CH от источника опорного напряжения ИOH к выходу CH при значениях емкости корректирующего конденсатора C1, изменяющегося в пределах от 500пФ до 100мкФ. Из этого рисунка следует, что при увеличении емкости корректирующего конденсатора C1 расширяется в сторону низких частот диапазон ослабления шумов источника опорного напряжения. Так, при C1=100 мкФ можно наблюдать ослабление шумов больше в четыре раза в диапазоне от 10 Гц до 10 МГц.

Таким образом, в предлагаемой схеме рис. 2а обеспечивается подавление переменных шумов, помех и наводок, присутствующих в выходном напряжении опорного источника ИОН. При этом диапазон частот, в котором это подавление обеспечивается, зависит от численных значений постоянной времени $\tau_1 = R_4C_1$. Учитывая, что резистор *R*4 может иметь значения сопротивлений в единицы-десятки кОм, можно сделать вывод о том, что численные значения емкости конденсатора *C*1, обеспечивающего эффективное подавление шумов $u_{\rm m}$ в заданном диапазоне частот, в предлагаемой схеме в N_c -раз меньше, чем в классическом CH, где

$$N_{\rm c} = \frac{R_4}{R_{\rm H, KB}} T >> 1.$$
(12)

Следовательно, при одинаковых значениях емкости конденсатора *C*1 в схемах рис. 1б и рис. 2 предлагаемые цепи компенсации обеспечивают более эффективное подавление шумов ИОН.

На рис. 4 представлена зависимость выходного и входного шума (или помехи) от частоты при емкости корректирующего конденсатора C1=4,5мкФ в CH рис. 2a. На частоте 50 Гц выходной шум равен входному, а выше по частоте он начинает уменьшаться, достигая значения шума в 1,66 раза меньше, чем входной шум на частоте 100 Гц и 76,6 раза на частоте 10 кГц.

Рис. 4 Выходной шум схемы рис. 2а при емкости С1=4,5мкФ

Таким образом, компьютерное моделирование подтверждает результаты качественного анализа. Реализация методов собственной компенсации шумовой составляющей источника опорного питания позволяет существенно понизить коэффициент шума в сравнении с классической схемой СН при сравнительно небольших значениях емкости корректирующего конденсатора.

Статья подготовлена при выполнения НИР по теме «Разработка и исследование аналоговой электронной компонентной базы нового поколения для систем связи, радиоэлектроники и технической кибернетики» в рамках федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009 - 2013 годы»

Литература

1. Дворников О.В., Чеховский В.А., Крутчинский С.Г., Щекин Д.А., Щербинин И.П., Прокопенко Н.Н., Старченко Е.И. Импортозамещающие практические разработки и проекты ИС на базе радиационностойкого АБМК // Проблемы разработки перспективных микро- и наноэлектронных систем : сб. науч. трудов всерос. науч.- практ. конф. М. : ИППМ РАН, 2006, С. 200-205

2. Будяков А.С., Прокопенко Н.Н., Савченко Е.М., Крутчинский С.Г., Старченко Е.И. Опыт разработки и моделирования аналоговых микросхем с предельными параметрами на базе Российских биполярных технологий // Проблемы разработки перспективных микро- и наноэлектронных систем : сб. науч. трудов всерос. науч.- практ. конф. М. : ИППМ РАН, 2006, С. 206-211

3. Прокопенко Н.Н., Серебряков А.И., Манжула В.Г. Особенности проектирования дифференциальных усилителей с повышенным коэффициентом усиления при низкоомной нагруке // Научно-технические ведомости СПбГПУ «Информатика, Телекоммуникации и управление». 2010. № 103. С. 39-42.

4. Прокопенко Н.Н., Будяков П.С., Манжула В.Г. Метод повышения коэффициента усиления SiGe-операционных усилителей с низковольтным питанием // Научно-технические ведомости СПбГПУ «Информатика, Телекоммуникации и управление». 2010. № 103. С. 58-62.

5. Прокопенко Н.Н., Коабасюк Н.В., Серебряков А.И., Метод собственной компенсации импедансов пассивной коллекторной нагрузки в широкополосных усилителях // Успехи современной радиоэлектроники. Зарубежная радиоэлектроника. 2011. № 9. С. 71-76.