

Влияние фазового состава диоксида титана на фотокаталитическую деградацию органических красителей

С.О. Черкасова, В.В. Шаповалов, И.П. Дмитренко и А.П. Будник

Международный Исследовательский Центр «Интеллектуальные материалы», Южный федеральный университет, Ростов-на-Дону

Аннотация: В настоящей работе проводилось исследование фотокаталитических свойств неорганических адсорбентов на основе диоксида титана (TiO₂) различного аллотропного состава. Дана сравнительная характеристика эффективности фото-стимулированной деградации двух органических красителей – метиленового синего и бриллиантового зеленого на поверхности адсорбентов. Выявлено, что разложение метиленового синего слабо зависит от фазового состава фотокатализатора, в то время как бриллиантовый зеленый деградирует активней, будучи нанесенным на анатаз.

Ключевые слова: TiO₂, фотокатализ, оксид металла, красители.

Введение

Как известно, фотокатализ – это увеличение скорости протекания реакций под действием света в присутствии катализатора. Он широко применяется в таких различных областях как очистка и обеззараживание воздуха, где летучие органические соединения разлагаются до безопасных молекул воды и углекислого газа [1], искусственный фотосинтез [2], расщепление воды на кислород и водород [3], окисление органических загрязнителей с использованием наночастиц оксидов металлов [4].

В наши дни большое внимание уделяется вопросам уменьшения загрязнения окружающей среды. Сточные воды предприятий текстильной, пищевой, фармацевтической и кожевенной промышленности содержат различные органические красители, что вызывает серьезную озабоченность. Большинство красителей имеют синтетическое происхождение и устойчивы к биодеградации. Использование фотокатализаторов позволяет разложить их на простые и нетоксичные соединения, сохраняя окружающую среду [5].

Полупроводниковые фотокатализаторы характеризуются большой шириной запрещенной зоны, поглощая преимущественно в синей области и в ультрафиолетовом диапазоне света. В настоящее время большой

популярностью пользуется диоксид титана (TiO₂). Он успешно применяется в лакокрасочной промышленности, при производстве пигментов, в синтезе водорода с помощью фотолиза воды, фотокаталитическом восстановлении CO_2 до CH_4 и его гомологов, в технологических процессах очистки воды и воздуха от органических примесей и других [6].

Известно, что со снижением геометрических размеров до наноуровня, многие материалы проявляют новые свойства. В частности, наибольшей фотокаталитической активностью обладают наноразмерные частицы TiO_2 (< 50 нм). Однако даже на таком уровне может быть значимым влияние кристаллической фазы материала [7]. В настоящей работе представлено сравнительное исследование фотокаталитической активности TiO_2 рутила и анатаза [8], а также их смеси, при фотодеградации органических красителей – метиленового синего (МС) и бриллиантового зеленого (БЗ), часто используемых в качестве стандартных проб для тестирования материалов.

МС представляет собой гетероциклическое ароматическое соединение; он является лекарством и сильнодействующим катионным красителем с максимумом поглощения при 664 нм. Окраска МС обусловлена хромофорной цепочной двойных связей (р-система электронов) [9]. БЗ также является антисептическим средством и синтетическим красителем. Максимум полосы поглощения находится при 625 нм. Окраска БЗ обусловлена наличием двух хромофоров, соединенных посредством сопряженной системы π-связей через два бензольных кольца и двойную связь между ними [10].

Эксперимент

Для исследования были взяты коммерческие образцы (производства Sigma-Aldrich) двух полиморфных модификаций TiO₂ – рутила, анатаза и их смеси, а также красителей – метиленового синего (C₁₆H₁₈N₃SCl) и бриллиантового зеленого (C₂₇H₃₄N₂O₄S).

Для контроля фазы образцов был использован рентгеновский порошковый дифрактометр Bruker D2 Phaser (CuK α λ = 1,540562 Å) с шагом 0,02° градуса по 2 θ в диапазоне 15-80, время экспозиции в точке 0,1 с.

Оптические спектры были сняты на спектрофотометре Shimadzu UV-2600 с шагом 2 нм. Были приготовлены водные растворы красителей с концентрациями: (1) $C_0 = 12,5 \cdot 10^{-5}$ моль, (2) $C_1 = 6,25 \cdot 10^{-5}$ моль, (3) $C_2 = 3,12 \cdot 10^{-5}$ моль, (4) $C_3 = 1,56 \cdot 10^{-5}$ моль и (5) $C_4 = 0,78 \cdot 10^{-5}$ моль. По полученным оптическим спектрам была построена калибровочная кривая, по которой определялось изменение концентрации красителя на TiO₂.

Для исследования фотодеградации красителей, растворами МБ и БЗ с концентрацией C_0 были смочены три образца TiO₂ разного фазового состава на чашках Петри (1 мл раствора на 1,5 г порошка) и помещены в сушильный шкаф до полного высыхания. Затем были измерены их оптические спектры в режиме отражения (против BaSO₄) с помощью интегрирующей сферы.

Фотокаталитическая деградация красителей на TiO_2 стимулировалась облучением образцов искусственным источником света в самодельной "solar box" установке. Она представляла собой вентилируемый короб, внутренняя поверхность которого была обклеена отражающей фольгой. В верхней части ящика установлена светодиодная лама (Viso Systems Wolta) с тепловой температурой 4295 К и световым потоком ~1000 люменов. Образцы размещались под лампой на расстоянии 10 см и освещались 1, 3 и 6 часов, после чего измерялись их оптические спектры.

Результаты и обсуждения

После смачивания красителями БЗ и МС порошков TiO₂ разного фазового состава, образцы имели интенсивный цвет, поблекший после высыхания в связи с частичным испарением водного раствора красителя при высушивании. Внешний вид образцов до облучения светом, и после 3-х и 6-

ти часов облучения представлен на Рис. 1 с подписями на снимках. Видна прогрессирующая деколорация порошков с увеличением времени облучения.

Рис. 1 - Изменение цвета образцов до облучения светом (а) и после облучения в "solar box" в течение 3 ч. (б) и 6 ч. (в)

Дифрактограммы исходных образцов TiO₂ представлены на Рис. 2а. Полученные профили соответствуют фазам рутила, анатаза и их смеси. По уширению рефлексов был определен размер наночастиц по формуле Дебая-Шеррера [11] с использованием метода Ритвельда; он представлен в Табл. 1.

На Рис. 2б представлены оптические спектры чистых образцов TiO₂. На них виден край фундаментального поглощения при 400 нм, характерный для полупроводниковых веществ. Видно, что край поглощения смещается в УФобласть от образца с фазой рутила к анатазу, смешаная фаза расположена в промежутке. Построение TAUC-графика (врезка в Рис. 2б) позволяет оценить ширину запрещенной зоны образцов; результаты даны в Табл. 1.

Измеренные оптические спектры фото-стимулированной деградации органических красителей МС и БЗ на образцах TiO_2 с разным фазовым составом представлены на Рис. 3. Образцы освещались в "solar box" в течение 1, 3 и 6 ч. При этом цвет порошков изменялся от насыщенного синего/фиолетового до белого/бледного (см. Рис. 1).

Рис. 2 - Дифрактограммы (а) и оптические спектры (б) образцов TiO₂ с разным фазовым составом до нанесения красителей

Таблица 1. Характеристики образцов TiO₂ с разным фазовым составом

Параметр	ТіО ₂ , анатаз	ТіО ₂ , рутил
1. Ширина запрещенной зоны, эВ:		
1.1. Образцы одной фазы	3,24	3,34
1.2. Образец смешанной фазы	3,26	
2. Размер частиц, нм:		
2.1. Образцы одной фазы	75	50
2.2. Образец смешанной фазы	73 + 64	

Спектры поглощения МС на TiO₂ с различным фазовым составом имеют максимумы, расположенные при 544 нм для анатаза и 615 нм для рутила (см. Рис. 3). Профили поглощения имеют комплексный характер. Фотокаталитическая деградация МС и БЗ рассчитывалась по формуле:

 $DEG = ((A_0 - A) / A_0) \times 100\%$ (1)

где A₀ и A – интенсивность поглощения красителя (в максимуме) до и после освещения соответственно.

Полученные по данным Рис. 3 зависимости для деградации (1) и уменьшения концентрации красителей *С/С*₀ представлены на Рис. 4.

Рис. 3 - Оптические спектры процесса фотодеградации МС (а) и БЗ (б) на образцах TiO₂ с разным фазовым составом

Из Рис. 4 следует, что при 6 ч облучения достигается деградация 90%, более полная для MC, чем для БЗ. Анализ характера деградации указывает, что в случае MC фазовый состав TiO_2 мало влияет на эффективность, в то время как БЗ полнее деградирует на TiO_2 чистой фазы (где анатаз более эффективен), а не смеси фаз. Также видно, что с уменьшением концентрации красителя в половину исходной, скорость его деградации замедляется.

Рис. 4 - Процесс фотодеградации красителей MC (а) и БЗ (б) на образцах TiO₂ с разным фазовым составом

Выводы

Проведено сравнительное исследование процесса фотокаталичтиеской деградации органических красителей МС и БЗ на поверхности TiO_2 с разным фазовым составом: рутил, анатаз и их смесь. Оптические спектры образцов позволили установить, что (1) 6 ч облучения достаточно для деградации 90% исходного количества красителей, причем МС деградирует более полно, чем БЗ; (2) МС и БЗ имеют близкую скорость деградации, которая уменьшается после деградации половины количества красителя; (3) деградация МС слабо зависит от фазы TiO_2 , в то время как БЗ эффективней деградирует на рутиле.

Благодарность. Исследование выполнено при финансовой поддержке Минобрнауки РФ в рамках Договора № 14. Y26.31.0001 о выделении гранта Правительства РФ (Мегагрант).

Литература

1. Carp O., Huisman C.L., Reller A. Photoinduced reactivity of titanium dioxide // Progress in Solid State Chemistry, 2004. №32. pp. 33-177.

2. Appleyard S.J., Simple photovoltaic cells for exploring solar energy concepts // Physics education, 2006. 41. №5. pp. 409-419.

3. Kudo A., Kato H., Tsuji I. Strategies for the Development of Visible-lightdriven Photocatalysts for Water Splitting // Chemistry Letters, 2004. 33. №12. pp. 1534-1539.

4. Tang W. Z., An H. UV/TiO₂ photocatalytic oxidation of commercial dyes in aqueous solutions // Chemosphere, 1995. 31. №9. pp. 4157-4170.

5. Kostedt W.L., Drwiega J., Mazyck D.W., Lee S.-W., Sigmund W., Wu C.-Y., Chadik P. // Environmental Science & Technology, 2005. 39. pp. 8052-8056.

6. Малюков С.П., Саенко А.В., Бондарчук Д.А. Исследование влияния толщины пленки TiO₂ на фотоэлектрические характеристики перовскитовых солнечных элементов // Инженерный вестник Дона, 2016, №4 URL: ivdon.ru/ru/magazine/archive/n4y2016/3866

7. Кравцов А.А., Сысоев И.А., Блинов А.В., Ясная М.А., Гиш Е.А. Исследование влияния pH реакционной среды на кислотно-основные свойства поверхности наночастиц TiO₂, синтезированного золь-гель методом // Инженерный вестник Дона, 2015, №1. URL: ivdon.ru/ru/magazine/archive/n1p2y2015/2819.

8. Landmann M., Rauls E., Schmidt W. G. The electronic structure and optical response of rutile, anatase and brookite TiO₂ // Journal of Physics: Condensed Matter, 2012. 24. №19. pp. 1-6.

9. Беликов В. Г. Учебное пособие по фармацевтической химии. – М.: Медицина, 1979. С. 328.

Фрайштат Д. М. Реактивы и препараты для микроскопии.
Справочник. – М.: Химия, 1980. С. 67.

11. Jenkins R. and Snyder R.L. Introduction to X-ray Powder Diffractometry. John Wiley & Sons Inc, 1996. pp 89-91.

References

1. Carp O., Huisman C.L., Reller A. Progress in Solid State Chemistry, 2004. №32. pp. 33-177.

2. Appleyard S.J. Physics education, 2006. 41. №5. pp. 409-419.

3. Akihiko K., Hideki K., Issei T. Chemistry Letters, 2004. 33. №12. pp. 1534-1539.

4. W. Z. Tang, H. Chemosphere, 1995. 31. №9. pp. 4157-4170.

5. Kostedt W.L., Drwiega J., Mazyck D.W., Lee S.-W., Sigmund W., Wu C.-

Y., Chadik P. Environmental Science & Technology, 2005. 39. pp. 8052-8056.

6. Maljukov S.P., Saenko A.V., Bondarchuk D.A. Inženernyj vestnik Dona (Rus), 2016, №4. URL: ivdon.ru/ru/magazine/archive/n4y2016/3866

7. Kravcov A.A., Sysoev I.A., Blinov A.V., Jasnaja M.A., Gish E.A. Inženernyj vestnik Dona (Rus), 2015, №1, URL: ivdon.ru/ru/magazine/archive/n1p2y2015/2819

8. Landmann M., Rauls E., Schmidt W. G. Journal of Physics: Condensed Matter. 2012. 24. №19. pp. 1-6.

9. Belikov V. G. Uchebnoe posobie po farmacevticheskoj himii. [Textbook on Pharmaceutical Chemistry] M.: Medicina, 1979. p. 328.

Frajshtat D. M. Reaktivy i preparaty dlja mikroskopii. Spravochnik.
[Reagents and preparations for microscopy. Reference book.] Moscow, Himija.
1980. p. 67.

11. Jenkins R. & Snyder R.L. John Wiley & Sons Inc. 1996. pp. 89-91.