

Приближенная методика расчета балок с гофрированной стенкой

А.П. Лапина, А.С. Чепурненко, М.С. Турко

Донской государственный технический университет, Ростов-на-Дону

Аннотация: В статье рассматривается методика расчета балок с гофрированной стенкой конструкций трехслойных эквивалентной жесткости. Приводится вывод как разрешающих уравнений для одномерного конечного элемента трехслойной балки. Вводится гипотеза о том, что полки полностью воспринимают нормальные напряжения, а стенка работает только на сдвиг. При получении основных уравнений учитывается наличие вынужденных деформации, которые могут включать в себя деформации ползучести, температурные деформации, деформации усадки и т.д. Представлено решение тестовой задачи для шарнирно опертой по концам балки под действием равномерно распределенной по длине нагрузки. Для контроля достоверности результатов выполнен конечно-элементный анализ в объемной постановке в программном комплексе ЛИРА. Полки балки моделируются плоскими треугольными оболочечными конечными элементами, а стенка – прямоугольными КЭ оболочки.

Ключевые слова: балка с гофрированной стенкой, трехслойная балка, метод конечных элементов, эквивалентная жесткость, напряженно-деформированное состояние.

Задачу изгиба балки с гофрированной стенкой сведем к расчету трехслойной конструкции эквивалентной жесткости. В работах [1-10] рассматриваются вопросы перехода от гофрированных пластин И эквивалентным гладким ортотропным пластинам. Для гофрированной стенки внутренними усилиями и деформациями связь при плоском между напряженном состоянии можно представить в виде:

$$\begin{cases} N_x \\ N_y \\ S \end{cases} = \begin{bmatrix} A_{11} & A_{12} & 0 \\ A_{12} & A_{22} & 0 \\ 0 & 0 & A_{33} \end{bmatrix} \begin{cases} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{cases},$$
(1)

где $N_x = \sigma_x \delta u \ N_y = \sigma_y \delta$ – нормальные усилия, $S = \tau_{xy} \delta$ – сдвигающая сила, δ – толщина стенки.

Для жесткостей А_{іі} будем использовать формулы, представленные в [1]:

$$A_{11} = \frac{E\delta^4}{12(1-\nu^2)I}; \quad A_{12} = \nu A_{11}; \quad A_{22} = E\delta\frac{S}{\varepsilon}; \quad A_{33} = \frac{\varepsilon}{S}\frac{E\delta}{2(1+\nu)},$$
(2)

где I — момент инерции гофра, S — длина дуги одной волны гофра, ε — проекция длины волны на ось x (рис. 1).

Для эквивалентной ортотропной пластины связь между напряжениями и деформациями запишется в виде:

$$\sigma_x = \frac{E_1}{1 - \nu_1 \nu_2} (\varepsilon_x + \nu_2 \varepsilon_y); \quad \sigma_y = \frac{E_2}{1 - \nu_1 \nu_2} (\varepsilon_y + \nu_1 \varepsilon_x); \quad \tau_{xy} = G\gamma_{xy}.$$
(3)

Если известны величины приведенных жесткостей A_{ij} , то приведенные упругие характеристики E_1, E_2, v_1, v_2, G можно определить по формулам:

$$\mathbf{v}_{1} = \frac{A_{12}}{A_{22}}; \mathbf{v}_{2} = \frac{A_{12}}{A_{11}}; E_{1} = \frac{A_{11}(1 - \mathbf{v}_{1}\mathbf{v}_{2})}{\delta} = \frac{A_{11}A_{22} - A_{12}^{2}}{A_{22}\delta};$$

$$E_{2} = \frac{A_{22}(1 - \mathbf{v}_{1}\mathbf{v}_{2})}{\delta} = \frac{A_{11}A_{22} - A_{12}^{2}}{A_{10}\delta}; G = \frac{A_{66}}{\delta}.$$
(4)

Отметим, что для гофрированных листов приведенный модуль упругости E_1 существенно ниже модулей упругости E_2 и E, поэтому для расчета балок с гофрированной стенкой можно воспользоваться технической теорией трехслойных конструкций. Согласно данной теории нормальные напряжения полностью воспринимаются несущими слоями, в качестве которых выступают полки, а средний слой – стенка – работает только на сдвиг.

Рассмотрим приближенную методику расчета с применением метода конечных элементов. Используемый КЭ приведен на рис. 2.

Рис. 2. – Конечный элемент трехслойной балки

Данный конечный элемент имеет в каждом узле 3 степени свободы: перемещения u^{μ} и u^{s} верхнего и нижнего слоя вдоль оси x, а также прогиб w. При выводе разрешающих уравнений учтем наличие вынужденных деформаций в несущих слоях и среднем слое, которые могут включать в себя температурные деформации, а также деформации ползучести. Физические уравнения при этом запишутся в виде:

$$\varepsilon_x^{n(e)} = \frac{\sigma_x^{n(e)}}{E^{n(e)}} + \varepsilon_x^{*n(e)}; \quad \gamma^c = \frac{\tau^c}{G^c} + \gamma^*, \tag{5}$$

где $\epsilon_{x}^{*_{H(e)}}, \gamma^{*}$ – вынужденные деформации.

Для перемещений среднего слоя примем линейное распределение по толщине:

$$u^{c} = \frac{u^{s} + u^{n}}{2} + \frac{u^{n} - u^{s}}{h} z.$$
(6)

Полные деформации сдвига среднего слоя можно найти из соотношений Коши:

$$\gamma_{zx}^{c} = \frac{\partial u^{c}}{\partial z} + \frac{\partial w}{\partial x} = \frac{u^{n} - u^{s}}{h} + \frac{\partial w}{\partial x}.$$
(7)

Аппроксимацию перемещений $u^{n}(x), u^{e}(x), w(x)$ запишем в виде:

$$u^{n(e)}(x) = u_1^{n(e)} + \frac{u_2^{n(e)} - u_1^{n(e)}}{l}x; \quad w(x) = w_1 + \frac{w_2 - w_1}{l}x.$$
(8)

Деформации несущих слоев определяются по формулам:

$$\varepsilon_x^{n(6)} = \frac{\partial u^{n(6)}}{\partial x} = \frac{u_2^{n(6)} - u_1^{n(6)}}{l}.$$
 (9)

Подставив (8) в (7), получим:

$$\gamma^{c} = \frac{u_{1}^{''} - u_{1}^{''}}{h} + \frac{x}{hl} \Big[u_{2}^{''} - u_{1}^{''} - \left(u_{2}^{''} - u_{1}^{''} \right) \Big] + \frac{w_{2} - w_{1}}{l}.$$
(10)

Равенства (9) и (10) можно представить в матричном виде:

$$\{\varepsilon\} = \begin{cases} \varepsilon_{x}^{H} \\ \varepsilon_{x}^{e} \\ \gamma^{c} \end{cases} = \begin{bmatrix} -\frac{1}{l} & 0 & 0 & \frac{1}{l} & 0 & 0 \\ 0 & -\frac{1}{l} & 0 & 0 & \frac{1}{l} & 0 \\ \frac{1}{h} \left(1 - \frac{x}{l}\right) & -\frac{1}{h} \left(1 - \frac{x}{l}\right) & -\frac{1}{l} & \frac{x}{lh} & -\frac{x}{lh} & \frac{1}{l} \end{bmatrix} \{U\} = [B]\{U\},$$
(11)

ГДе $\{U\} = \{u_1^n \quad u_1^s \quad w_1 \quad u_2^n \quad u_2^s \quad w_2\}^T.$

Выразим в (5) напряжения через деформации:

$$\sigma_x^{n(s)} = E^{n(s)} \left(\varepsilon_x^{n(s)} - \varepsilon_x^{*n(s)} \right); \quad \tau^c = G^c \left(\gamma^c - \gamma^* \right). \tag{12}$$

Для касательных напряжений в среднем слое примем равномерное распределение. Вектор внутренних усилий запишется в виде:

$$\{N\} = \begin{cases} N_x^n \\ N_x^s \\ Q \end{cases} = \begin{cases} \sigma_x^n b \delta^n \\ \sigma_x^s b \delta^s \\ \tau^c \delta^{cm} h \end{cases} = [D](\{\varepsilon\} - \{\varepsilon^*\}),$$
(13)

где $[D] = \begin{bmatrix} E^{n}b\delta^{n} & & \\ & E^{s}b\delta^{s} & \\ & & G^{c}\delta^{cm}h \end{bmatrix}, \{\varepsilon^{*}\} = \begin{cases} \varepsilon^{*n}_{x} \\ \varepsilon^{*s}_{x} \\ \gamma^{*} \end{cases}, b - ширина полок, \delta^{cm} - толщина$

стенки.

Потенциальная энергия деформации трехслойной балки запишется в виде:

$$\Pi = \frac{1}{2} \int_{0}^{l} \left(N_{x}^{H} \varepsilon_{x,el}^{H} + N_{x}^{e} \varepsilon_{x,el}^{e} + Q \gamma_{el}^{c} \right) dx = \frac{1}{2} \int_{0}^{l} \left\{ N \right\}^{T} \left\{ \varepsilon^{el} \right\} dx,$$
(14)

где { ϵ^{el} } – вектор упругих деформаций, равных разности между полными и вынужденными деформациями:

$$\left\{\boldsymbol{\varepsilon}^{el}\right\} = \begin{cases} \boldsymbol{\varepsilon}^{n}_{x,el} \\ \boldsymbol{\varepsilon}^{e}_{x,el} \\ \boldsymbol{\gamma}^{c}_{el} \end{cases} = \left\{\boldsymbol{\varepsilon}\right\} - \left\{\boldsymbol{\varepsilon}^{*}\right\}.$$
(15)

Подставляя (15) в (13) и далее (13) в (14), получим:

$$\Pi = \frac{1}{2} \int_{0}^{l} \left(\{ \varepsilon \}^{T} [D] \{ \varepsilon \} - 2 \{ \varepsilon \}^{T} [D] \{ \varepsilon^{*} \} + \{ \varepsilon^{*} \}^{T} [D] \{ \varepsilon^{*} \} \right) dx =$$

$$= \frac{1}{2} \{ U \}^{T} \int_{0}^{l} [B]^{T} [D] [B] dx \{ U \} - \{ U \}^{T} \int_{0}^{l} [B]^{T} [D] \{ \varepsilon^{*} \} dx + \frac{1}{2} \{ \varepsilon^{*} \}^{T} [D] \{ \varepsilon^{*} \} dx.$$
(16)

Разрешающие уравнения МКЭ могут быть получены из условия минимума полной потенциальной энергии, которая записывается в виде:

$$W = \Pi - A,\tag{17}$$

где $A = \{U\}^{T} \{F\}$ – потенциал внешних сил, $\{F\}$ – вектор внешних узловых нагрузок.

После применения принципа минимума полной потенциальной энергии, решение сводится к системе уравнений, имеющей вид:

$$[K]{U} = {F} + {F^*},$$
(18)

где $\{F^*\} = \int_0^l [B]^T [D] \{\varepsilon^*\} dx$ — вклад вынужденных деформаций в вектор нагрузок, $[K] = \int_0^l [B]^T [D] [B] dx$ — матрица жесткости.

Элементы верхнего треугольника матрицы [K] имеют вид:

$$\begin{split} K_{1,1} &= K_{4,4} = \frac{G^c \delta^{cm} l}{3h} + \frac{E^n b \delta^n}{l}; \\ K_{1,2} &= K_{4,5} = -\frac{G^c \delta^{cm} l}{3h}; \\ K_{1,6} &= -K_{1,3} = K_{2,3} = -K_{2,6} = -K_{3,4} = K_{3,5} = K_{4,6} = -K_{5,6} = \frac{G^c \delta^{cm}}{2}; \\ K_{1,4} &= \frac{G^c \delta^{cm} l}{6h} - \frac{E^n b \delta^n}{l}; \\ K_{1,5} &= K_{2,4} = -\frac{G^c \delta^{cm} l}{6h}; \\ K_{2,2} &= K_{5,5} = \frac{G^c \delta^{cm} l}{3h} + \frac{E^e b \delta^e}{l}; \\ K_{2,5} &= \frac{G^c \delta^{cm} l}{6h} - \frac{E^e b \delta^e}{l}; \\ K_{3,3} &= -K_{3,6} = K_{6,6} = \frac{G^c \delta^{cm} h}{l}. \end{split}$$

При помощи трехслойных конечных элементов была решена тестовая задача для шарнирно опертой по концам балки, загруженной равномерно распределенной нагрузкой. Форма гофра описывалась синусоидальной функцией, имеющей вид:

 $y = f \sin(2\pi x / \varepsilon).$

Расчет выполнялся при b = 10 см, l = 3 м, h = 30 см, $\delta^{cT} = 2$ мм, $\delta^{H} = \delta^{B} = 3$ мм, $E = 2 \cdot 10^{5}$ МПа, v = 0.3, q = 0.2 кH/м, f = 3 см, $\varepsilon = 10$ см.

(19)

Геометрические характеристики гофра определялись при помощи численного интегрирования, при указанных исходных данных: $I = 1.21 \cdot 10^{-6}$ м⁴, S = 1.62 є. Приведенные упругие характеристики: $E_1 = 121$ МПа, $E_2 = 3.24$ $\cdot 10^5$ МПа, $G = 4.75 \cdot 10^4$ МПа, $v_1 = 1.12 \cdot 10^{-4}$, $v_2 = 0.3$.

Полученная в результате максимальная величина прогиба в середине пролета составила $w_{\text{max}} = 0.0859$ мм. Отметим, что значение прогиба в середине пролета также можно определить аналитически по формуле:

$$w_{\max} = \frac{5ql^4}{384EI_n} + \frac{ql^2}{8Gh\delta_{cm}},$$
 (20)

где $I_n = b\delta^n h^2 / 2$ – момент инерции полок, δ^n – толщины полок.

Подстановка исходных данных в формулу (20) дает значение $w_{\text{max}} = 0.086$ мм, которое практически совпадает с результатом, полученным при помощи МКЭ.

Для контроля достоверности результатов также было выполнено конечно-элементное моделирование в объемной постановке в программном комплексе ЛИРА. Полки моделировались плоскими треугольными оболочечными конечными элементами, а стенка – прямоугольными КЭ. Полученные в результате изополя вертикальных перемещений приведены на рис. 3. Перемещение точек нижней полки в середине пролета составили 0.0864 мм, что отличается от результата, полученного по приближенной методике, на 0.5%.

Рис. 3. – Изополя вертикальных перемещений, полученные в ПК ЛИРА

Литература

 Zheng Ye., Berdichevsky V.L., Wenbin Yu. An equivalent classical plate model of corrugated structures // International Journal of Solids and Structures.
 2014. Vol. 51. pp. 2073-2083.

2. Seydel E. Shear buckling of corrugated plates // Jahrbuch die Deutschen Versuchsanstalt fur Luftfahrt. 1931. №9. pp. 233–245.

3. Лехницкий С. Г. Анизотропные пластинки. 2-е изд., перераб. и доп. Москва: Гостехиздат, 1957. 463 с.

4. Szilard R. Theory and Analysis of Plates. Prentice-Hall, 1974. 532 p.

5. Lau J.H. Stiffness of corrugated plate // J. Eng. Mech. Div. 1981. Vol. 107. pp. 271–275.

6. Кадомцева Е.Э., Сикачева Н.В., Кирсанов Ю.А. Расчёт на прочность гофрированной тонкой пластины на упругом основании обратным методом // Инженерный вестник Дона, 2017, №2 URL: ivdon.ru/ru/magazine/archive/N2y2017/4251.

7. Лукин А.О. Определение прогибов балок с гофрированной стенкой с учетом сдвиговых деформаций // Инженерный вестник Дона, 2013, №1 URL: ivdon.ru/ru/magazine/archive/n1y2013/1496

8. Beskopylny A.N., Kadomtseva E.E., Strelnikov G.P. The Boundary Condition Influence on a Stress-Strain State of a Corrugated Plate on an Elastic Foundation // Materials Science Forum. 2018. Vol. 931. pp. 60-65

9. Briassoulis D. Equivalent orthotropic properties of corrugated sheets // Comput. Struct. 1986. №23. pp. 129–138.

10. Xia Y., Friswell M.I., Saavedra Flores E.I. Equivalent models of corrugated panels // International Journal of Solids and Structures. 2012. Vol. 49 (13). pp. 1453–1462.

References

1. Zheng Ye., Berdichevsky V.L., Wenbin Yu. International Journal of Solids and Structures. 2014. Vol. 51. pp. 2073-2083.

2. Seydel E. Jahrbuch die Deutschen Versuchsanstalt für Luftfahrt. 1931. №9. pp. 233–245.

3. Lekhnitsky S.G. Anizotropnyye plastinki [Anisotropic plates]. Moscow: Gostekhizdat, 1957. 463 p.

4. Szilard R. Theory and Analysis of Plates. Prentice-Hall, 1974. 532 p.

5. Lau J.H. J. Eng. Mech. Div. 1981. Vol. 107. pp. 271–275.

6. Kadomtseva E.E., Sikacheva N.V., Kirsanov Yu.A. Inženernyj vestnik Dona (Rus), 2017, №2. URL: ivdon.ru/ru/magazine/archive/N2y2017/4251.

7. Lukin A.O. Inženernyj vestnik Dona (Rus), 2013, №1. URL: ivdon.ru/ru/magazine/archive/n1y2013/1496

8. Beskopylny A.N., Kadomtseva E.E., Strelnikov G.P. Materials Science Forum. 2018. Vol. 931. pp. 60-65

9. Briassoulis D. Comput. Struct. 1986. №23. pp. 129–138.

10. Xia Y., Friswell M.I., Saavedra Flores E.I. International Journal of Solids and Structures. 2012. Vol. 49 (13). pp. 1453–1462.