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Аннотация: В статье рассматривается проблема синтеза адаптивных систем управления 
для робототехнических комплексов, функционирующих в условиях неопределенности и 
переменных внешних воздействий. Предложена методология построения систем 
управления на основе алгоритмов глубокого обучения с подкреплением , интегрированная 
с традиционными методами управления. Научная новизна заключается в разработке 
гибридной архитектуры, сочетающей детерминированную динамическую модель робота, 
обеспечивающую базовую устойчивость, и адаптивный нейросетевой модуль на основе 
алгоритма обучения с подкреплением, который сочетает элементы оценки функции 
полезности) и метода «актор-критик» компенсирующий неучтенные возмущения и 
параметрические неопределенности. Практическая значимость подтверждается 
результатами вычислительных экспериментов на модели манипулятора с шестью 
степенями свободы, где предложенная система показала снижение ошибки 
позиционирования на 67% при действии переменных нагрузок по сравнению с 
оптимальным пропорционально-интегрально-дифференцирующим регулятором (ПИД-
регулятором), а также способность к онлайн-адаптации при изменении массы груза. 
Реализованный подход открывает перспективы для создания автономных 
робототехнических систем, способных эффективно выполнять задачи в 
неструктурированных средах. 
Ключевые слова: глубокое обучение с подкреплением, адаптивное управление, 
робототехнические комплексы, гибридные системы управления, динамическое 
моделирование, нейросетевые контроллеры, алгоритм обучения с подкреплением. 

 

Введение 

Современные робототехнические комплексы (РТК) находят 

применение в задачах, требующих высокой точности и автономности: от 

промышленной сборки и хирургии до работы в экстремальных условиях. 

Традиционные подходы к синтезу систем управления, основанные на точных 

динамических моделях и методах линейной теории [1], демонстрируют 

ограниченную эффективность в условиях переменных параметров, 

неизмеряемых возмущений и неопределенности модели [2]. Жесткие 

требования к надежности исключают использование чисто нейросетевых 
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регуляторов, не гарантирующих устойчивость. 

На пересечении робототехники и искусственного интеллекта 

сформировалось направление, использующее глубокое обучение с 

подкреплением (Deep Reinforcement Learning – Deep RL) для решения задач 

управления [3]. Агент (контроллер) обучается через взаимодействие со 

средой (моделью робота), максимизируя кумулятивную награду. Однако 

прямое применение Deep RL к реальным РТК сопряжено с проблемами 

сходимости, большим объемом обучающих данных и рисками небезопасного 

поведения в процессе обучения. 

Целью данной работы является разработка и исследование гибридной 

адаптивной системы управления для РТК, которая сочетает гарантированную 

устойчивость, обеспечиваемую классическим контроллером на основе 

модели, и адаптивность, достигаемую за счет нейросетевого модуля, 

обучаемого по методу глубокого обучения с подкреплением. Для достижения 

цели решаются задачи: 1) формализация гибридной архитектуры управления; 

2) синтез компенсирующего нейросетевого модуля на основе 

модифицированного алгоритма обучения с подкреплением, который сочетает 

элементы Q-обучения (оценки функции полезности) и метода «актор-критик» 

(Deep Deterministic Policy Gradient – DDPG) 3) верификация подхода на 

комплексной динамической модели манипуляционного робота [4]. 

Результаты исследования 

Предлагаемая архитектура построена по принципу каскадного 

управления с прямой компенсацией возмущений. Она состоит из трех 

ключевых уровней, что обеспечивает разделение ответственности между 

детерминированными и адаптивными компонентами. 

Уровень 1 – базовый регулятор (траекторный контур), на котором 

реализуется закон управления, основанный на номинальной обратной 

динамике робота. Для манипулятора с n степенями свободы, динамика 
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которого описывается уравнением: 

M(q)q̈ +  C(q, q̇)q̇ +  G(q)  =  τ,                                                       (1) 

Используется метод вычисления моментов (Computed Torque Control). 

Формируется управляющий сигнал [5]: 

τ_base =  M� (q)(q̈_d +  K_v ė +  K_p e)  +  Ĉ(q, q̇)q̇ +  Ĝ(q),         (2) 

где q_d, q̇_d, q̈_d – желаемые обобщенные координаты, скорости и 

ускорения;  

e = q_d - q – ошибка слежения;  

K_p, K_v – диагональные матрицы коэффициентов, обеспечивающие 

экспоненциальную устойчивость для идеальной модели;  

M̂, Ĉ, Ĝ – оценки матриц инерции, кориолисовых сил и гравитации.  

Этот контур обеспечивает глобальную асимптотическую устойчивость 

в отсутствие неопределенностей. 

Уровень 2 – адаптивный компенсатор на основе Deep RL. Данный 

уровень предназначен для генерации дополнительного управляющего 

воздействия τ_rl, компенсирующего разницу между реальной и номинальной 

динамикой: неучтенные динамические эффекты (трение, люфты), неточности 

параметров и внешние возмущения d(t). Компенсатор реализован в виде 

акторной нейронной сети (Actor-Network), которая отображает наблюдения 

за состоянием системы в корректирующее действие. Архитектура сети 

включает полносвязные слои с функциями активации в нейронных сетях, 

широко используемой в глубоком обучении Rectified Linear Unit и 

гиперболическим тангенсом на выходном слое для ограничения амплитуды 

действия [5]. 

Уровень 3 – система обучения с подкреплением. Этот уровень 

обеспечивает адаптацию параметров компенсатора (Уровень 2) в процессе 

работы. Он реализует алгоритм DDPG с рядом модификаций для повышения 

устойчивости обучения. Используется буфер воспроизведения опыта (Replay 
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Buffer) для хранения переходов (s_t, a_t, r_t, s_{t+1}), где состояние s_t 

включает ошибки позиционирования и их производные, а также 

интегральные члены, действие a_t = τ_rl, а награда r_t формируется как 

взвешенная отрицательная функция от ошибки слежения и величины 

управляющего воздействия [6]: 

r_t =  − (𝑒𝑒𝑡𝑡 Q e +  𝑒̇𝑒𝑡𝑡 R ė +  τ_𝑟𝑟𝑟𝑟𝑇𝑇  P τ_rl)                                        (3) 

Критическая сеть (Critic-Network) обучается минимизировать 

среднеквадратичную ошибку Беллмана, а политика актора – 

максимизировать ожидаемую кумулятивную награду. Общее управляющее 

воздействие на приводы робота формируется как сумма сигналов от базового 

регулятора и RL-компенсатора: τ = τ_base + τ_rl. 

Обучение нейросетевого компенсатора формализуется в рамках 

марковского процесса принятия решений (МППР), задаваемого кортежем (S, 

A, P, R, γ), где S – пространство состояний, A – пространство действий, P – 

функция переходов, R – функция награды, γ – коэффициент дисконтирования 

[7]. 

Состояние агента в момент времени t формируется из измеримых 

величин системы: 

s_t =  [e_t, e ̇_t,∫ e_t dt, q_d, t, q̇_d, t]𝑇𝑇                                              (4) 

Действие агента представляет собой вектор дополнительных 

управляющих моментов, подаваемых на каждое сочленение манипулятора: 

a_t = τ_rl,t ∈ A. Для обеспечения безопасности и предотвращения насыщения 

приводов, действие ограничивается: |τ_rl,i| ≤ τ_{max,i}. 

Функция награды спроектирована для решения основной задачи – 

минимизации ошибки слежения при разумных энергозатратах, как показано в 

уравнении (3). Матрицы Q, R, P являются диагональными и положительно 

определенными, их выбор определяет приоритет между точностью и усилием 

управления [8]. 
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Модифицированный алгоритм DDPG для онлайн-обучения в 

гибридной архитектуре представлен следующим образом. 

Алгоритм 1. Итеративное обновление политики компенсатора:  

1. Инициализация: загрузить параметры базового контроллера (1). 

Инициализировать акторную сеть μ(s|θ^μ) и критическую сеть Q(s,a|θ^Q) со 

случайными весами θ^μ, θ^Q. Создать их целевые копии θ^{μ'} ← θ^μ, θ^{Q'} 

← θ^Q. Инициализировать буфер воспроизведения опыта B. 

2. Для каждого эпизода обучения: 

а) Получить начальное состояние s_1 от симулятора/робота. 

б) Для каждого шага эпизода t: 

I. Выбрать действие согласно текущей политике и исследовательскому 

шуму: a_t = μ(s_t|θ^μ) + N_t, где N_t – шум Орнштейна-Уленбека. 

II. Выполнить действие a_t в среде (подать τ = τ_base + a_t), получить 

награду r_t и новое состояние s_{t+1}. 

III. Сохранить переход (s_t, a_t, r_t, s_{t+1}) в буфере B. 

IV. Выполнить шаг обучения: 

Выбрать мини-пакет из N случайных переходов из B. 

Вычислить целевые значения для критической сети:  

y_i = r_i + γ Q'(s_{i+1}, μ'(s_{i+1}|θ^{μ'})|θ^{Q'}).                         (5) 

Обновить критическую сеть, минимизируя функцию потерь:  

L(θ^Q) = 1/N ∑_i (y_i - Q(s_i, a_i|θ^Q))^2.                                       (6) 

Обновить акторную сеть, используя градиент восходящего потока 

политики:  

∇_{θ^μ} J ≈ 1/N ∑_i ∇_a Q(s, a|θ^Q)|_{s=s_i, a=μ(s_i)} ∇_{θ^μ} 

μ(s|θ^μ)|_{s_i}.                                                                                              (7) 

Мягко обновить целевые сети:  

θ^{Q'} ← τ θ^Q + (1-τ) θ^{Q'}, θ^{μ'} ← τ θ^μ + (1-τ) θ^{μ'},       (8) 

где τ << 1. 
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Данный алгоритм выполняется циклически, позволяя системе 

адаптироваться к изменениям в динамике. 

Для проверки эффективности предложенной гибридной системы была 

создана детализированная модель шестизвенного манипулятора в среде 

Gazebo с плагинами Robot Operating System Control. Модель включала 

нелинейное сухое и вязкое трение в сочленениях, ограничения по моментам 

и скоростям. Обучающие эксперименты проводились на симуляторе, 

финальная оценка – на независимом тестовом наборе траекторий [9]. 

Сценарий 1. Слежение за сложной пространственной траекторией 

(лемниската Бернулли) в условиях переменной полезной нагрузки (масса m 

изменялась ступенчато от 0 до 2 кг). Сравнивались три контроллера: 1) 

оптимальный пропорционально-интегрально-дифференциальный регулятор 

(ПИД-регулятор); 2) базовый контроллер на основе обратной динамики 

(уравнение 1); 3) гибридная система (базовый контроллер + RL-компенсатор) 

[10]. 

Результаты по средней абсолютной ошибке позиционирования 

концевого эффектора (МАЕ) представлены в Таблице №1. 

Таблица №1 

Сравнительные показатели точности слежения при переменной нагрузке 

Контроллер МАЕ, 
мм 

(m=0 
кг) 

МАЕ, 
мм 

(m=1 
кг) 

МАЕ, 
мм 

(m=2 
кг) 

Относительный рост 
ошибки при m=2 кг 

ПИД-регулятор 
(оптимизированный) 

3,2 7,8 15,4 381% 

Базовый контроллер 
(Computed Torque) 

1,5 4,1 9,7 547% 

Гибридная система 
(Предлагаемая) 

1,3 1,8 2,2 69% 

 

Данные таблицы демонстрируют ключевое преимущество гибридной 
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системы – робастность к параметрическим изменениям. В то время как 

точность классических контроллеров существенно деградирует с ростом 

нагрузки, предложенная система сохраняет высокую точность, адаптируясь к 

новым динамическим условиям. 

Сценарий 2. Оценка способности к онлайн-адаптации. В середине 

выполнения траектории масса груза скачкообразно увеличивалась с 0,5 до 1,5 

кг. На рисунке 1 показана реакция гибридной системы: после 

кратковременного всплеска ошибки (Δt_{адапт} ≈ 0,8 с), RL-компенсатор 

скорректировал свою политику, вернув ошибку к прежнему низкому уровню. 

Контроллер на основе чистой модели не смог восстановить точность. 

 
Рис. 1. – Динамика ошибки позиционирования при скачкообразном 

изменении массы груза 
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Сценарий 3. Анализ производительности и устойчивости обучения. 

Обучение гибридной системы проводилось в течение 500 эпизодов. На 

рисунке 2 показана динамика средней награды за эпизод. Кривая 

демонстрирует устойчивую сходимость после 300 эпизодов, что 

подтверждает эффективность выбранной архитектуры и функции награды. 

 

 
Рис. 2. – Динамика средней награды в процессе обучения гибридной 

системы 



Инженерный вестник Дона, №2 (2026) 
ivdon.ru/ru/magazine/archive/n2y2026/10747 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2026 

 

Заключение 

Таким образом, разработана и формализована трехуровневая гибридная 

архитектура адаптивной системы управления для робототехнических 

комплексов. Архитектура сочетает гарантирующий устойчивость 

детерминированный контроллер, построенный на основе модели обратной 

динамики, и адаптивный нейросетевой компенсатор, обучаемый по 

алгоритму DDPG. 

Предложен модифицированный алгоритм обучения компенсатора, 

интегрированный в контур управления и обеспечивающий онлайн-адаптацию 

к параметрическим неопределенностям и внешним возмущениям. 

Специально спроектированная функция награды обеспечивает баланс между 

точностью слежения и энергозатратами. 

Проведенные вычислительные эксперименты на модели шестизвенного 

манипулятора подтвердили высокую практическую эффективность подхода. 

Показано, что гибридная система обеспечивает снижение ошибки 

позиционирования на 67-77% по сравнению с наилучшим классическим 

аналогом в условиях переменной нагрузки и демонстрирует способность к 

быстрой онлайн-адаптации при скачкообразном изменении параметров. 

Реализованный подход создает основу для разработки нового 

поколения автономных робототехнических систем, способных устойчиво и 

точно функционировать в недетерминированных, неструктурированных 

средах, таких как обслуживание сложной инфраструктуры, спасательные 

операции и освоение космоса. 

Перспективными направлениями дальнейших исследований являются: 

разработка методов обеспечения гарантий безопасности (safe RL) для 

предотвращения нежелательного поведения в процессе обучения, создание 

эффективных алгоритмов трансферного обучения для ускорения адаптации 
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на физических роботах, а также исследование мультиагентных сценариев для 

координации групп роботов. 
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