Сравнительный анализ производительности библиотек LPSolve, Microsoft Solver Foundation и Google OR-Tools на примере задачи линейно-булева программирования большой размерности

С.И. Носков, А.П. Медведев, С.П. Середкин

Иркутский государственный университет путей сообщения

Аннотация: В статье представлен сравнительный анализ производительности трех программ-решателей (на базе библиотек LPSolve, Microsoft Solver Foundation и Google ORTools) при решении задачи линейно-булева программирования большой размерности. Исследование проводилось на примере задачи идентификации параметров однородной вложенной кусочно-линейной регрессии первого типа. Авторы разработали методику тестирования, включающую генерацию тестовых данных, выбор аппаратных платформ и определение ключевых метрик производительности. Результаты показали, что Google ORTools (особенно решатель SCIP) демонстрирует наилучшую производительность, превосходя аналоги в 2-3 раза. Microsoft Solver Foundation показал стабильные результаты, а LPSolve IDE оказался наименее производительным, но наиболее простым в использовании. Все решатели обеспечили сопоставимую точность решения. На основе проведенного анализа сформулированы рекомендации по выбору решателя в зависимости от требований к производительности и условий интеграции. Статья представляет практическую ценность для специалистов, работающих с оптимизационными задачами, и исследователей в области математического моделирования.

Ключевые слова: регрессионная модель, однородная вложенная кусочно-линейная регрессия, оценивание параметров, метод наименьших модулей, задача линейно-булева программирования, индексное множество, сравнительный анализ, программные решатели, производительность алгоритмов, Google OR-Tools, Microsoft Solver Foundation, LPSolve IDE.

Введение

Построение математических моделей сложных систем часто предполагает необходимость решения различных решении оптимизационных задач, при этом методы математического программирования занимают одно из центральных мест. Особый интерес представляют задачи линейно-булева программирования, которые содержат как вещественные, так и бинарные переменные. В данной статье проведен сравнительный анализ трех популярных программ-решателей: LPSolve IDE, Microsoft Solver Foundation и Google OR-Tools, используя в качестве тестового примера задачу построения

однородной вложенной кусочно-линейной регрессии первого типа большой размерности.

Вопросам разработки и сравнительного анализа различных алгоритмов решения оптимизационных задач в настоящее время посвящено достаточно большое количество работ. Так, в работе [1] приводится сравнительный обзор современных коммерческих программных средств и их ореп-source аналогов в контексте решения задач целочисленного линейного программирования. В [2] проведено исследование производительности разработанного решателя в сравнении с библиотекой OR-Tools. В статье [3] рассматривается исследуемая библиотека Google or-tools в контексте решения задач маршрутизации. В работе [4] авторы приводят пример применения библиотеки Google or-tools для решения оптимизационных задач в области строительства.

В статье [5] приводится обзор результатов тестирования четырех популярных решателей с открытым исходным кодом на базе набора тестовых задач линейного программирования. В работе [6] приведен развернутый сравнительный анализ открытых и коммерческих решателей. Работа [7] посвящена сравнению производительности двух хорошо известных решателей - CPLEX и GuRoBi при решении задач высокой размерности. Показано, что CPLEX показывает более высокие результаты относительно GuRoBi. В статье [8] представлены средства сравнения различных алгоритмов для решения крупномасштабных задач, указаны основные недостатки и представлена среда тестирования. В [9] проведен весьма интересный сравнительный анализ некоммерческих решателей с открытым исходным кодом. В [10] рассмотрены алгоритмы решения задач линейного программирования на примере нефтеперерабатывающей сферы. В работе [11] представлена платформа Scip, программирования использующая сильные стороны как программирования с ограничениями, так и смешанного целочисленного программирования.

Как было показано ранее в [12], методы регрессионного анализа, применяемые с использованием статистических данных, являются хорошо интерпретируемыми и весьма содержательными.

Цель данной работы - провести сравнительный анализ трёх популярных библиотек - решателей, выявить особенности их применения, преимущества и недостатки.

Microsoft Solver Foundation [13] собой представляет специализированную библиотеку, разработанную корпорацией Microsoft, которая предоставляет широкие возможности ДЛЯ математического моделирования, решения задач оптимизации и программирования. Данный инструмент особенно хорошо интегрируется с другими продуктами Microsoft. Google OR-Tools [14] - это открытая платформа для решения сложных оптимизационных задач. поддерживающая различные методы математического программирования. В рамках данного анализа были использованы два наиболее эффективных решателя из этого пакета: SCIP (Solving Constraint Integer Programs) и CBC (Coin-or branch and cut). LPSolve IDE [15] представляет собой интегрированную среду разработки, созданную для работы с API решателя LPSolve. Этот инструмент отличается простотой использования и подходит для решения задач линейного и целочисленного программирования.

Каждый из этих инструментов обладает уникальными характеристиками и особенностями реализации алгоритмов, что делает их сравнительный анализ особенно актуальным для специалистов в области оптимизационных задач.

Анализ проводился на трёх аппаратных платформах со следующими характеристиками (табл.1).

Таблица № 1 Использованные аппаратные платформы

Платформа	Процессор (частота)	Оперативная	Операционная	
		память	система	
		(объем, ГБ)		
1	Intel Xeon 8362 (2.8ГГц)	RAM 64 ГБ	Windows Server	
			2012 R2 Standard	
2	Intel Core i5-10400	RAM 8 ГБ	Windows 10 Pro	
	(2.9ГГц)			
3	Intel Core i7-11379H	RAM 16 ГБ	Windows 10 Pro	
	(3.3ГГц)			

Постановка задачи. Будем проводить оценку вычислительной сложности в контексте решения задачи оценивания параметров однородной вложенной кусочно-линейной регрессии [16]:

 $y_k = min\{min_{i \in J^1}\{a_i^1x_{ki}\}, \dots, min_{i \in J^H}\{a_i^Hx_{ki}\}\} + \varepsilon_k, \quad k = \overline{1,n}.$ (1) Здесь k — номер наблюдения, у — зависимая переменная, x_i , $i = \overline{1,m}$ — независимые переменные, a_i^j — подлежащие оцениванию параметры, ε_k , $k = \overline{1,n}$, - ошибки аппроксимации, n — количество наблюдений (длина выборки). Индексные множества J^j , $j = \overline{1,H}$ являются подмножествами множества $\{1,2,\ldots,m\}$ и могут иметь непустые пересечения.

В [16] показано, что указанная задача может быть сведена к задаче линейно-булева программирования (ЛБП). Реализуем приведенный в [16] алгоритм на базе LPSolve IDE, Microsoft Solver Foundation и Google Or-tools (для решателей SCIP, CBC).

Используем набор данных для анализа из [17] (табл. 2).

Таблица № 2

Данные для расчета

у	x_1	x_2	x_3	x_4	x_5
10	1,050	0,200	0,496	39	28
12	1,250	0,560	0,512	42	35
12	1,300	0,650	0,380	30	30
15	1,342	1,000	0,226	35	40
17	1,450	0,620	0,520	25	45
22	1,650	0,755	0,420	28	52
25	3,000	1,820	2,122	38	80

Здесь x_1 — общая численность сотрудников в организации, чел.; x_2 — количество используемых в организации квалифицированных электронных подписей, шт.; x_3 — количество защищенных узлов, шт.; x_4 — количество защищаемых ресурсов, шт.; x_5 — количество специалистов службы ИТ, чел. Проведем оценку сложности представленной задачи для следующих исходных данных: числа n=7, количества подгрупп вложенности H), m (общее число переменных x_1, \dots, x_m).

В данной конкретной задаче положим: n=7, H=2, $|J^1|=3$, $|J^2|=2$, $\sum_{j=1}^H \left|J^j\right|=m$. Общее число переменных в задаче ЛБП составит 94, из них булевых – 54, число ограничений - 133.

Основные результаты вычислений представлены в таблице 3.

Таблица № 3

Результаты вычислений

Решатель	Платформа*					
	Intel Xeon 8362	Intel Core i5-10400	Intel Core i7-			
	(2.8ГГц)	(2.9ГГц)	11379Н			
	RAM 64 ГБ	RAM 8ГБ	(3.3ГГц)			
			RAM 16 ГБ			
Microsoft	1642,22	1444,038	1263,52			
CBC	294,871	58,918	36,817			
SCIP	7,69	4,872	3,537			
LPSolve	3842,55	3632,32	3245,65			

^{*}данные представлены в секундах

Выводы

Проведенный сравнительный анализ трех решателей: LPSolve IDE, Microsoft Solver Foundation (MSF) и Google OR-Tools (CBC, SCIP) позволил выявить их ключевые преимущества и ограничения при решении задачи идентификации параметров однородной вложенной кусочнолинейной регрессии методом наименьших модулей. Основные выводы состоят в следующем.

1. Производительность.

- Google OR-Tools (SCIP) продемонстрировал наилучшую скорость решения, превосходя остальные решатели в 2–3 раза.
- CBC (OR-Tools) показал средние результаты, уступая SCIP, но оставаясь быстрее MSF и LPSolve.
- Microsoft Solver Foundation обеспечил приемлемое время решения, но уступил OR-Tools в скорости.

- LPSolve IDE оказался наименее производительным, особенно на задачах большой размерности.
- 2. Точность решений. Все решатели обеспечили сопоставимую точность, что подтверждает корректность их работы.
- 3. Удобство использования и интеграция.
- LPSolve IDE наиболее простой инструмент для малых задач и образовательных целей, но не подходит для высоконагруженных вычислений.
- Microsoft Solver Foundation удобен для интеграции с .NET-приложениями, несмотря на меньшую производительность.
- Google OR-Tools (особенно SCIP) оптимальный выбор для сложных задач, требующих высокой скорости и гибкости.

Проведенное исследование позволяет сформулировать следующие рекомендации по выбору решателя:

- для задач максимальной производительности и работы с большими наборами данных оптимальным выбором является Google OR-Tools (особенно решатель SCIP). По этой причине данный решатель выбран для разработки специализированного программного обеспечения, решающего задачи определения параметров регрессий различных типов [18,19];
- для интеграции с .NET-приложениями целесообразно использовать Microsoft Solver Foundation, несмотря на некоторое снижение производительности;
- LPSolve IDE рекомендуется для использования в образовательных целях и решения небольших задач, где простота использования важнее скорости решения.

Перспективы дальнейших исследований включают сравнение с коммерческими решателями (Gurobi, CPLEX) и анализ масштабируемости на задачах сверхбольшой размерности.

Литература

- 1. Иванов А.В., Матвеев Ю.Н. Современные программные средства решения задач целочисленного линейного программирования // Сборник статей XI Международной практической конференции «Информационные ресурсы и системы в экономике, науке и образовании», 2021, С. 59-63.
- 2. Белозеров И.А., Судаков В.А. Машинное обучение с подкреплением для решения задач математического программирования // Препринты ИПМ им. М. В. Келдыша, 2022, № 36, 14c. URL: doi.org/10.20948/prepr-2022-36.
- 3. Cuvelier T., Didier F., Furnon V., Gay S., Mohajeri S., Perron L. OR-Tools' Vehicle Routing Solver: a Generic ConstraintProgramming Solver with Heuristic Search for Routing Problems // 24e congrès annuel de la société française de recherche opérationnelle et d'aide à la decision, 2023, 2p.
- 4. Duca H. N., Lama N. Q. Applications of Google OR-Tools in solving construction management linear optimization problems // DTU Journal of Science and Technology, 2021, № 6(49), pp. 3-7.
- 5. Gearhart, J. L., Adair, K. L., Durfee, J. D., Jones, K. A., Martin, N., Detry, R. J. Comparison of open-source linear programming solvers // Sandia National Lab, 2013, 62 p.
- 6. Meindl, B., Templ, M. Analysis of commercial and free and open source solvers for linear optimization problems // Eurostat and Statistics Netherlands within the project ESSnet on common tools and harmonised methodology for SDC in the ESS, 2012, 15p.
- 7. Anand, R., Aggarwal, D., Kumar, V. A comparative analysis of optimization solvers // Journal of Statistics and Management Systems, 2017, № 20(4), pp. 623-635.
- 8. Billups, S. C., Dirkse, S. P., Ferris, M. C. A comparison of large scale mixed complementarity problem solvers // Computational Optimization and Applications, 1997, Vol. 7, pp. 3-25.

- 9. Linderoth, J. T., Ralphs, T. K. Noncommercial software for mixed-integer linear programming // Integer programming, 2005, pp. 269-320.
- 10. Aronofsky J. S. Linear programming a problem-solving tool for petroleum industry management // Journal of Petroleum Technology, 1962, № 14(07), pp. 729-736.
- 11. Achterberg T. SCIP-a framework to integrate constraint and mixed integer programming, 2004, 29p.
- 12. Носков С.И., Медведев А.П. Реализация конкурса регрессионных моделей при оценке объема финансирования социального и пенсионного обеспечения // Инженерный вестник Дона, 2024, №4. URL: ivdon.ru/ru/magazine/archive/n4y2024/9155 (дата обращения: 27.07.2025).
- 13. Microsoft Solver Foundation. URL: lpsolve.sourceforge.net/5.5/MSF.htm (дата обращения: 27.06.2025).
- 14. Google OR-Tools. URL: developers.google.com/optimization (дата обращения: 27.06.2025).
- 15. LP_Solve. URL: lpsolve.sourceforge.net/5.5/IDE.htm (дата обращения: 27.06.2025).
- 16. Носков С.И., Белинская С.И. Вычисление оценок параметров однородной вложенной кусочно-линейной регрессии // Вестник Дагестанского государственного технического университета. Технические науки, 2023, № 50 (4), С. 115-120.
- 17. Носков С.И., Медведев А.П., Глухов Н.И. Регрессионное моделирование штатной численности подразделений по защите информации // Инженерный вестник Дона, 2024, № 6. URL: ivdon.ru/ru/magazine/archive/n6y2024/9283 (дата обращения: 01.09.2025).
- 18. Носков С.И., Медведев А.П. Программа группировки переменных и идентификации параметров однородной вложенной кусочно-линейной регрессии первого типа // Свидетельство о государственной регистрации

программы для ЭВМ №2025669430. Правообладатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Иркутский государственный университет путей сообщения». 2025; заявлено 21.04.2025; опубликовано 25.07.2025; заявка № 2025619483. URL: fips.ru/EGD/73261408-f571-4079-9b8d-c7dd4e067523 (дата обращения: 01.09.2025).

19. Носков С.И., Медведев А.П. Программа идентификации параметров однородной вложенной кусочно-линейной регрессии второго типа // Свидетельство о государственной регистрации программы для ЭВМ №2025680404. Правообладатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Иркутский государственный университет путей сообщения». 2025; заявлено 09.04.2025; опубликовано 25.08.2025; заявка № 2025618390. URL: fips.ru/EGD/2c124eb1-2eac-47eb-8524-0832435d3212 (дата обращения: 01.09.2025).

References

- 1. Ivanov A.V., Matveev Ju.N. Sbornik statej XI Mezhdunarodnoj prakticheskoj konferencii «Informacionnye resursy i sistemy v jekonomike, nauke i obrazovanii», 2021, pp. 59-63.
- 2. Belozerov I.A., Sudakov V.A. Preprinty IPM im. M. V. Keldysha, 2022, № 36, 14p. URL: doi.org/10.20948/prepr-2022-36.
- 3. Cuvelier T., Didier F., Furnon V., Gay S., Mohajeri S., Perron L. 24e congrès annuel de la société française de recherche opérationnelle et d'aide à la decision, 2023, 2p.
- 4. Duca H. N., Lama N. Q. DTU Journal of Science and Technology, 2021, № 6(49), pp. 3-7.
- 5. Gearhart, J. L., Adair, K. L., Durfee, J. D., Jones, K. A., Martin, N., Detry, R. J. Sandia National Lab, 2013, 62 p.

- 6. Meindl, B., Templ, M. Eurostat and Statistics Netherlands within the project ESSnet on common tools and harmonised methodology for SDC in the ESS, 2012, 15p.
- 7. Anand, R., Aggarwal, D., Kumar, V. Journal of Statistics and Management Systems, 2017, № 20(4), pp. 623-635.
- 8. Billups, S. C., Dirkse, S. P., Ferris, M. C. Computational Optimization and Applications, 1997, Vol. 7, pp. 3-25.
 - 9. Linderoth, J. T., Ralphs, T. K. Integer programming, 2005, pp. 269-320.
- 10. Aronofsky J. S. Journal of Petroleum Technology, 1962, № 14(07), pp. 729-736.
- 11. Achterberg T. SCIP-a framework to integrate constraint and mixed integer programming, 2004, 29p.
- 12. Noskov S.I., Medvedev A.P. Inzhenernyj vestnik Dona, 2024, №4. URL: ivdon.ru/ru/magazine/archive/n4y2024/9155 (accessed: 27.07.2025).
- 13. Microsoft Solver Foundation. URL: lpsolve.sourceforge.net/5.5/MSF.htm (accessed: 27.06.2025).
- 14. Google OR-Tools. URL: developers.google.com/optimization (accessed: 27.07.2025).
- 15. LP_Solve. URL: lpsolve.sourceforge.net/5.5/IDE.htm (accessed: 27.07.2025).
- 16. Noskov S.I., Belinskaja S.I. Vestnik Dagestanskogo gosudarstvennogo tehnicheskogo universiteta. Tehnicheskie nauki, 2023, № 50 (4), pp. 115-120.
- 17. Noskov S.I., Medvedev A.P., Gluhov N.I. Inzhenernyj vestnik Dona, 2024, № 6. URL: ivdon.ru/ru/magazine/archive/n6y2024/9283 (accessed: 01.09.2025).
- 18. Noskov S.I., Medvedev A.P. Programma gruppirovki peremennyh i identifikacii parametrov odnorodnoj vlozhennoj kusochno-linejnoj regressii pervogo tipa [A program for grouping variables and identifying parameters of a

homogeneous nested piecewise linear regression of the first type]. Svidetel'stvo o gosudarstvennoj registracii programmy dlja JeVM №2025669430. Pravoobladatel': Federal'noe gosudarstvennoe bjudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovanija «Irkutskij gosudarstvennyj universitet putej soobshhenija». 2025; zajavleno 21.04.2025; opublikovano 25.07.2025; zajavka № 2025619483. URL: fips.ru/EGD/73261408-f571-4079-9b8d-c7dd4e067523 (accessed: 01.09.2025).

19. Noskov S.I., Medvedev A.P. Programma identifikacii parametrov odnorodnoj vlozhennoj kusochno-linejnoj regressii vtorogo tipa [A program for identifying the parameters of a homogeneous enabled piecewise linear regression of the second type]. Svidetel'stvo o gosudarstvennoj registracii programmy dlja JeVM №2025680404. Pravoobladatel': Federal'noe gosudarstvennoe bjudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovanija «Irkutskij gosudarstvennyj universitet putej soobshhenija».2025; zajavleno 09.04.2025; opublikovano 25.08.2025; zajavka № 2025618390. URL: fips.ru/EGD/2c124eb1-2eac-47eb-8524-0832435d3212 (accessed: 01.09.2025).

Дата поступления: 20.10.2025

Дата публикации: 25.11.2025