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Аннотация: В статье описывается метод подавления спекл-шума радиолокационных 
изображений (РЛИ), основанный на совместном использовании нейронной сети (НС) и 
вейвлет-преобразования. Выбор вейвлет-преобразования обусловлен локализацией спекла 
преимущественно в высокочастотных субполосах. Чтобы избежать появления артефактов, 
предлагается вместо пороговой обработки вейвлет-коэффициентов высокочастотных 
субполос использовать модифицированную НС U-Net с симметричной структурой. 
Поскольку регулярные структуры РЛИ маскируются из-за относительно небольших 
величин вейвлет-коэффициентов, то для их обнаружения с помощью НС U-Net 
производится усиление низкочастотных компонентов в высокочастотных субполосах. 
Предложенный метод демонстрирует высокую эффективность подавления спекл-шума 
при минимальных потерях структурной информации и превосходит некоторые 
традиционные методы обработки РЛИ по объективным и субъективным метрикам. 
Ключевые слова: спекл-шум, шумоподавление, вейвлет-преобразование, частотная 
субполоса, U-Net, нейронная сеть. 
 

Введение 

В современных задачах обработки изображений одной из ключевых 

проблем является подавление шумов и помех различных видов. Спекл 

является характерным шумом для изображений, формируемых системами 

когерентной визуализации, в частности, при формировании 

радиолокационных изображений (РЛИ), полученных с помощью радаров 

прямого и бокового обзоров (радары с синтезированной апертурой - РСА). 

Спекл проявляется в виде зернистой структуры, значительно ухудшающей 

визуальное восприятие данных, затрудняющей диагностику и интерпретацию 

информации [1]. Традиционные методы подавления шума, такие, как 

медианный фильтр, фильтры Винера, Ли, хотя и способны снизить уровень 

шума, приводят к потере важных структурных деталей и размытию текстур, 

что не применимо к сильно текстурированным изображениям [2]. 
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Перспективным направлением является использование вейвлет-

преобразования, которое позволяет разделять изображение на субполосы, 

содержащие низкочастотные и высокочастотные компоненты, что 

обеспечивает избирательное подавление шума при сохранении значимых 

деталей [3, 4]. Шумоподавление на основе вейвлет-преобразования часто 

реализуется путем пороговой обработки вейвлет-коэффициентов по 

определенному правилу [5]. К сожалению, определение величины 

оптимального порога представляет собой сложную задачу, а жесткая или 

мягкая пороговая обработка с заранее рассчитанными порогами приводит 

либо к чрезмерному сглаживанию РЛИ, либо к появлению артефактов звона 

(ringing artifacts), что снижает качество восстановления. В настоящее время 

сверточные нейронные сети (convolution neural networks – CNN) нашли 

широкое применение в задачах подавления шума на изображениях [6]. 

Традиционные CNN-модели, работающие непосредственно в 

пространственной области пикселей, относительно уверенно подавляют 

аддитивный шум, но показывают нестабильные результаты при наличии 

спекла. Кроме того, наблюдается потеря мелких деталей и искажения текстур 

вследствие переобучения нейронной сети (НС). 

Для преодоления указанных ограничений перспективным 

направлением является разработка гибридных методов, комбинирующих 

вейвлет-преобразование и различные модели нейронных сетей. Такие методы 

позволяют анализировать особенности изображения на разных масштабах, 

что способствует выделению полезного сигнала на фоне шума. 

Предложенный метод использует вейвлет-преобразование для декомпозиции 

изображения на множества вейвлет-коэффициентов в субполосах (LL, LH, 

HL, HH). Поскольку спекл преимущественно проявляется в высокочастотных 

субполосах вейвлет-преобразования, то для их обработки используется НС 

U-Net, которая эффективна благодаря своей симметричной структуре, 
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включающей пути энкодера и декодера, дополненные пропускными связями 

[7, 8]. Такие связи позволяют НС относительно уверенно сохранять и 

восстанавливать структурные (низкочастотные, информативные) 

компоненты изображения, которые были бы полностью или частично 

утрачены и/или искажены при традиционной пороговой обработке вейвлет-

коэффициентов. С другой стороны, вейвлет-коэффициенты высокочастотных 

субполос, как правило, являются относительно небольшими по величине, что 

маскирует регулярные, информативные структуры на разных масштабах и 

делает обучение и «правильную» настройку весов НС проблематичным 

(например, проблема «исчезающего градиента»). В связи с этим, 

предлагается выполнить усиление низкочастотных компонент в 

высокочастотных субполосах для повышения отношения сигнал-шум, что 

позволяет НС U-Net точнее отделять информативные структуры сигнала от 

шума [9]. В результате предложенная комбинация вейвлет-преобразования и 

НС U-Net должна обеспечивать относительно эффективное подавление 

спекла РЛИ, минимизируя при этом потери информативности. 

Постановка задачи 

Спекл-шум РЛИ в большинстве известных работ представляется как 

мультипликативный шум, поэтому математическая модель наблюдаемого 

изображения Y  имеет следующий вид: 
  ,Y X Z= ×  (1) 

где X  — исходное неискаженное изображение (оригинал), Z  — спекл-шум 

с экспоненциальным законом распределения и единичным средним [1]. 

Задача подавления спекла сводится к процессу получения оценки 

оригинала X  из зашумленного изображения Y . В контексте глубокого 

обучения задача заключается в обучении некоторой параметризованной 
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нелинейной функции  Fθ , отображающей зашумленное изображение Y  на 

соответствующее неискаженное изображение X : 

( ) ,  F Y Xθ ≈  
2) 

где θ — параметры глубокой нейронной сети. 

Функция  Fθ обучается на наборе размеченных пар 1{( , )}N
i i iY X = , где iY , 

Ni ,1= , — смоделированные зашумленные изображения, для которых 

известны соответствующие им оригиналы iX . Обучение осуществляется 

путем минимизации функции потерь, например среднеквадратичной ошибки 

(СКО), L1-Loss или индекса структурного сходства (structural similarity index 

measure – SSIM) между оценкой оригинала (предсказание) и самим 

оригиналом (целевое значение). Таким образом, после обучения с помощью 

параметризованной функции  Fθ можно обрабатывать произвольные 

зашумленные входные изображения, для которых оригинал неизвестен. 

Эффективность функции  Fθ  оценивается ее способностью к обобщению на 

новые, ранее не встречавшиеся изображения. 

В отличие от известных подходов, в которых НС оперирует 

непосредственно с пикселями изображений, предлагаемый метод работает в 

области вейвлет-трансформанты. Особенностью метода является обучение 

НС U-Net с целью предсказания карты шума предK  для вейвлет-

коэффициентов вместо вычисления оценки оригинала X . Модель НС 

предсказывает разности предO  между вейвлет-коэффициентами 

зашумленного ( зашумW ) и неискаженного изображений ( чистW ), полученных с 

помощью вейвлет-преобразования. Оценка оригинала вычисляется путем 

обратного вейвлет-преобразования на основе оценок вейвлет-коэффициентов 

очищ зашум предW W О= − . 
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Стационарное вейвлет-преобразование 

Предлагаемый метод использует стационарное вейвлет-преобразование 

(СВП) и CNN архитектуры U-Net. 

СВП, также известное как неразрушающее вейвлет-преобразование, 

было разработано для устранения главного недостатка быстрого вейвлет-

преобразования (схемы Малла, БВП) — чувствительности к сдвигу [10]. СВП 

отличается от БВП тем, что отсутствует этап децимации. В результате БВП 

формируются четыре субполосы: LL — вейвлет-коэффициенты 

аппроксимации, содержащие основную информацию об изображении и 

соответствующие его НСК, LH, HL, HH — вейвлет-коэффициенты деталей, 

соответствующие ВЧК по горизонтали, вертикали и диагонали 

соответственно. При СВП размеры всех субполос (LL, LH, HL, HH) на 

каждом уровне декомпозиции равны размеру исходного изображения. 

Выбор СВП для решения поставленной задачи обусловлен следующим 

причинами. 

1. Инвариантность к сдвигу. Результаты преобразования не зависят от 

смещения исходного сигнала, что делает его устойчивым для задач 

фильтрации и восстановления. 

2. Сохранение информации. Отсутствие децимации предотвращает 

безвозвратную потерю информации, что важно для последующего анализа и 

модификации коэффициентов. 

3. Отсутствие артефактов. Обработанные коэффициенты могут быть 

использованы для реконструкции изображения без искажений, характерных 

для БВП. 

Сверточная нейронная сеть U-Net 

CNN U-Net включает операции кодирования и декодирования. 

Архитектура НС U-Net представлена на рис. 1 и состоит из двух 

симметричных частей [7, 8]. 
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Кодер (сжимающий путь) содержит последовательность слоев свертки 

(conv 3×3) и функций активации, например выпрямленный линейный блок 

(rectified linear unit – ReLU), перемежающихся с операциями макс-пулинга 

(max-pooling 2×2) для уменьшения пространственной размерности и 

увеличения количества карт признаков. 

Декодер (расширяющий путь) содержит последовательность слоев 

транспонированной свертки (transpoed conv 2x2) для увеличения 

пространственной размерности и уменьшения глубины признаков, а также 

слоев свертки. На этом этапе происходит точная локализация функции. 

Пропускные связи (skip connections) составляют ключевой 

архитектурный элемент НС U-Net. Такие связи устанавливают прямую связь 

между соответствующими уровнями энкодера и декодера, передавая карты 

признаков непосредственно перед операцией пулинга на вход декодера. В 

контексте подавления шума НС U-Net используется в парадигме остаточного 

обучения, где сеть обучается предсказывать карту шума [11]. 

 
Рис. 1. – Архитектура U-Net 
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Предлагаемая архитектура НС U-Net 

Модель НС принимает на вход тензор размерности [B, 4, H, W], где 

четыре канала представляют собой потоки вейвлет-коэффициентов субполос 

(LL, LH, HL, HH), полученных после СВП зашумленного изображения. 

Энкодер построен как последовательность модулей двойной свёртки, в 

которых количество признаковых каналов экспоненциально возрастает от 32 

до 1024 при одновременном уменьшении пространственного разрешения в 

два раза на каждом уровне за счёт применения операций двумерного 

максимального пулинга. Конкретная последовательность преобразования 

каналов следующая: входной тензор с четырьмя каналами сначала 

проецируется в 32 признаковых канала, после чего последовательно 

увеличивается по схеме 32 → 64 → 128 → 256 → 512 → 1024. Декодер 

организован симметрично энкодеру: на каждом уровне он восстанавливает 

пространственное разрешение, используя транспонированные свёртки, что 

обеспечивает контролируемый и обучаемый процесс апсемплинга (up-

sampling). Критически важной особенностью является использование 

пропускных связей, которые конкатенируют признаки декодера с 

соответствующими признаками энкодера по каналам (например, 

512+1024→512), сохраняя как глобальный контекст, так и локальные детали 

частотных поддиапазонов. Финальный двумерный сверточный слой (32, 4, 1) 

преобразует полученные признаки обратно в четырехканальное 

представление, соответствующее четырем восстановленным субполосам 

вейвлет-коэффициентов. Такая архитектура позволяет модели эффективно 

обрабатывать каждую cубполосу отдельно, одновременно учитывая 

межканальные зависимости, что особенно важно для задач восстановления 

изображений, где различные частотные компоненты имеют разную 

чувствительность к шуму. 
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Предлагаемая НС обучается предсказывать разность между вейвлет-

коэффициентами соответствующих субполос зашумленного и оригинального 

изображений пред зашум чистO W W= − . Это упрощает задачу обучения, 

поскольку сеть фокусируется на моделировании отклонений, вызванных 

шумом, а не на реконструкции полного набора вейвлет-коэффициентов. 

Такой подход снижает сложность целевой функции и сужает пространство 

решений, позволяя модели эффективнее выявлять и компенсировать 

шумовые компоненты. На выходе сети формируется шумовая компонента 

вейвлет-коэффициентов предO , которая вычитается из исходных 

зашумлённых коэффициентов зашумW , что даёт очищенные коэффициенты 

очищ предзашумW W O= − . 

Для оптимизации параметров модели предлагается использовать 

комбинированную функцию потерь: 

.  =  * (  * L1  + (1 ) * (1 SSIM )) + 
                   * (  * L1  + (1 ) * (1 SSIM ))  +     
                   * (  * L1  + (1 ) * (1 SSIM ))  +
                   * (  *

LL LL

H

общ LL

L

HL L

LHH

H

L

HL

H

H

Loss W
W
W
W

β β
β β

α α

β

− −

− −
− −

 L1  + (1 ) * (1 SSIM )) . HH HHβ− −

 (3) 

Данная функция состоит из двух основных компонентов: L1-Loss и 

SSIM Loss. Комбинированный подход учитывает особенности каждого из 

четырех субполос вейвлет-коэффициентов, применяя дифференцированную 

стратегию: для низкочастотной субполосы LL, несущего основную 

структурную информацию изображения, приоритет отдается L1-Loss, 

который эффективно минимизирует абсолютные ошибки интенсивности 

пикселей и способствует точному восстановлению глобальных 

характеристик. Для ВЧС LH, HL и HH, содержащих детализированную 

информацию о границах и текстурах, предпочтение отдается SSIM, как 

метрике, более точно отражающей структурное сходство и лучше 
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сохраняющей визуальное качество мелких деталей. Общая формула потерь 

является взвешенной суммой компонентов с рекомендованными весами для 

L1-Loss в LL канале (субполосе) и для SSIM в LH, HL и HH каналах 

(субполосах). Такое взвешивание обеспечивает оптимальный компромисс 

между эффективным подавлением шума и сохранением как глобальных 

структурных характеристик изображения, так и локальных текстурных 

деталей. 

Подготовка обучающих данных 

Набор изображений, используемых для обучения и тестирования 

модели, взят из публичных датасетов TAMPERE17 [12], который содержит 

стандартные тестовые изображения в градациях серого размером 512×512 с 

разрешением 8 бит на пиксель. Из них 50 изображений используются для 

обучения модели и 10 изображений для тестирования. 

Для формирования соответствующих зашумленных изображений по 

соотношению (1) с помощью датчика случайных чисел моделировался спекл-

шум с единичным средним и задаваемой дисперсией в среде моделирования 

Python. 

Использование обученной модели для подавления спекл-шума 

Предлагаемый метод включает следующие этапы: 

Этап 1. Вейвлет-декомпозиция. Применение СВП первого уровня к 

изображению. В результате получаются 4 субполосы: LL1, LH1, HL1, HH1. 

Этап 2. Усиление НЧК в ВЧС. Для субполосы LL1 выполняется СВП с 

целью получения соответствующих субполос LL2, LH2, HL2, HH2. Для 

усиления НЧК в ВЧС производится суммирование вейвлет-коэффициентов 

деталей, полученных в результате трехуровневого СВП, с вейвлет-

коэффициентами деталей LH2, HL2, HH2. В результате формируются новые 

массивы вейвлет-коэффициентов LH1у, HL1у, HH1у. 



Инженерный вестник Дона, №2 (2026) 
ivdon.ru/ru/magazine/archive/n2y2026/10749 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2026 

Этап 3. Подавление шума с помощью НС U-Net. Модифицированные 

ВЧС (укладываются как трехканальное изображение) конкатенируются с 

субполосой LL1 (как четвертый канал) и подаются на вход НС U-Net. Сеть 

обучается предсказывать оценки вейвлет-коэффициентов субполос. 

Этап 4: Формирование оценки оригинала (то есть очищенного от 

спекл-шума) изображения осуществляется путем применения обратного СВП 

к предсказанным НС вейвлет-коэффициентам субполос (оценкам) LL1пред, 

LH1пред, HL1пред и HH1пред. 

Проведение экспериментов 

В рамках экспериментальной части исследования была реализована и 

протестирована предложенная архитектура модели с использованием языка 

программирования Python. Для построения, обучения и оценки модели 

применялись фреймворки глубокого обучения TensorFlow и Keras, а также 

специализированные библиотеки для обработки изображений и выполнения 

вейвлет-преобразований. Качество восстановления изображений оценивалось 

посредством трёх объективных метрик: СКО, пикового отношения сигнал-

шум (ПОСШ) и SSIM. 

Для оценки эффективности предложенного подхода проведён 

сравнительный анализ с рядом существующих методов: классическими 

алгоритмами, такими как адаптивный фильтр Ли и вейвлет-фильтрация с 

пороговой обработкой, а также CNN шумоподавления (Denoising CNN – 

DnCNN) и базовой U-Net, оперирующей непосредственно в 

пространственной области изображения. Кроме того, проведено сравнение 

результатов обработки зашумленных изображений с помощью обученной 

модели в случаях с усилением и без усиления низкочастотных компонент в 

высокочастотных субполосах вейвлет-преобразования.  
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Анализ экспериментальных результатов 

Полученные экспериментальные данные, представленные в таблице 

№ 1, демонстрируют эффективность предложенного метода по сравнению с 

рядом «классических» и современных методов шумоподавления по всем 

используемым объективным метрикам качества.  

В частности, сравнение с фильтром Ли и вейвлет-фильтрацией с 

пороговой обработкой показывает существенное улучшение количественных 

показателей, что свидетельствует о недостаточной способности 

традиционных методов адаптироваться к сложной структуре спекл-шума и 

сохранять детализацию изображения. Более того, предложенная архитектура 

превосходит и современные методы обработки изображений на основе 

глубокого обучения — DnCNN и базовую НС U-Net, оперирующую в 

пространственной области. 

Таблица № 1 

Результаты экспериментов 

Дисперсия 
шума 

CKO (.10-3) 
Зашумлённое 
изображение 

Восстановленное изображение 

Фильтр 
Ли 

Вейвлет-
фильтрация DnCNN U-Net 

Wavelet-U-Net  
(без усиления 

НЧК)  

Wavelet-U-Net 
(с усилением 

НЧК) 
0,01 4,21 3,39 4,44 2,22 1,72 1,29 1,02 
0,02 6,74 4,44 4,95 3,18 2,1 1,38 1,16 
0,03 8,95 5,42 5,34 4,05 2,4 1,52 1,34 
0,04 13,72 6,3 5,99 4,73 2,62 1,67 1,53 
0,05 16,82 7,13 6,32 5,4 2,79 1,91 1,76 
0,06 20,53 7,98 6,9 6,05 2,95 2,09 2,01 
0,07 23,84 8,78 7,64 6,47 3,09 2,27 2,31 
0,08 27,49 9,38 8,37 6,59 3,12 2,48 2,63 
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продолжение таблицы №1 

Дисперсия 
шума 

ПОСШ 
Зашумлённое 
изображение 

Восстановленное изображение 

Фильтр 
Ли 

Вейвлет-
фильтрация DnCNN U-Net 

Wavelet-U-Net  
(без усиления 

НЧК)  

Wavelet-U-Net 
(с усилением 

НЧК) 
0,01 23,97 24,69 23,53 26,54 27,65 28,91 30,01 
0,02 21,47 23,03 22,85 25,3 26,45 27,59 29,08 
0,03 19,88 21,79 22,11 23,84 25,63 26,91 28,18 
0,04 18,79 20,77 21,29 22,72 25,03 26,11 27,26 
0,05 17,86 19,89 20,63 21,9 24,53 25,47 26,34 
0,06 17,11 19,11 20,15 21,38 24,11 24,95 25,42 
0,07 16,32 18,43 19,51 20,8 23,85 24,53 24,51 
0,08 15,54 17,93 19,02 20,36 23,77 23,93 23,61 

окончание таблицы №1 

Дисперсия 
шума 

SSIM 
Зашумлённое 
изображение 

Восстановленное изображение 

фильтр 
Ли 

Вейвлет-
фильтрация DnCNN U-Net 

Wavelet-U-Net  
(без усиления 

НЧК)  

Wavelet-U-Net 
(с усилением 

НЧК) 
0,01 0,665 0,669 0,659 0,695 0,735 0,796 0,830 
0,02 0,576 0,637 0,621 0,661 0,719 0,763 0,793 
0,03 0,520 0,603 0,592 0,637 0,705 0,739 0,764 
0,04 0,481 0,568 0,567 0,617 0,689 0,719 0,740 
0,05 0,450 0,535 0,545 0,600 0,677 0,702 0,719 
0,06 0,423 0,507 0,524 0,586 0,662 0,686 0,701 
0,07 0,393 0,476 0,502 0,574 0,649 0,673 0,681 
0,08 0,365 0,453 0,478 0,563 0,637 0,663 0,658 

Таким образом, интеграция вейвлет-декомпозиции с последующим 

управляемым усилением низкочастотных компонент в архитектуру модели 

НС позволяет эффективно выделять полезный сигнал на фоне спекл-шума.  

   

а) б) в) 
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г) д) е) 

Рис. 2. – Результаты обработки тестового изображения: 

  а – чистое изображение; б – зашумленное изображение; в – метод вейвлет- 

фильтрации; г –фильтр Ли; д – DnCNN; е – предложенный метод. 

 

Визуальный анализ результатов, представленных на рис. 2, показывает, 

что изображение, обработанное предложенным методом, характеризуется 

лучшим сохранением мелких текстурных деталей, отсутствием характерных 

для известных методов артефактов (размытия, «звона», ложных контуров), а 

также естественным восприятием структурных элементов. Следует отметить 

отсутствие размытости краев объектов и текстур для РЛИ со спеклом 

сильной интенсивности. Результаты экспериментов также показывают, что 

при усилении низкочастотных компонент в высокочастотных субполосах 

вейвлет-преобразования значения метрик качества увеличиваются. Данный 

результат особенно характерен для критерия SSIM, который отражает 

информацию о текстуре изображения.  

Тем не менее, следует отметить, что эффективность предложенного 

метода снижается с увеличением интенсивности спекл-шума. Это 

объясняется тем, что при низком отношении сигнал-шум усиление 

низкочастотных компонент в высокочастотных субполосах может привести к 
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увеличению не только полезных структурных составляющих, но и шума, 

который в них присутствует, что снижает качество восстановления РЛИ. 

Заключение 

В статье предложен оригинальный метод подавления спекл-шума, 

сочетающий вейвлет-преобразование и модифицированную архитектуру НС 

U-Net с усилением низкочастотных компонент в высокочастотных 

субполосах. Эксперименты подтвердили эффективность метода по всем 

ключевым метрикам (СКО, ПОСШ и SSIM) и визуальному качеству. Однако 

метод имеет ограничения: снижение эффективности при высоком уровне 

шума из-за риска усиления шумовых компонент вместе с низкочастотными 

компонентами, повышенная вычислительная сложность (4 канала). В 

качестве направлений дальнейших исследований предлагается рассмотреть 

вейвлет-преобразование с большим числом уровней и использованием 

механизмов внимания внутри НС U-Net для обработки всех субполос. 
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