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Annoranus: Electrocardiogram (ECG)-based biometric authentication systems offer intrinsic
resistance to spoofing due to their physiological uniqueness. However, their performance in
dynamic real-world settings, such as wearable devices or stress-induced conditions, is often
compromised by noise, electrode displacement, and intra-subject variability. This study proposes
a novel hybrid framework that enhances robustness, ensuring high authentication accuracy and
reliability in adverse conditions, through integrated wavelet-based signal processing for noise
suppression and a deep-learning classifier for adaptive feature recognition. The system employs
preprocessing, QRS complex detection, distance—deviation modeling, a statistical comparison
method that quantifies morphological similarity between ECG templates by analyzing amplitude
and shape deviations and an averaging-threshold mechanism, combined with a feedforward
Multi-Layer Perceptron (MLP) neural network for classification. The MLP is trained on
extracted ECG features to capture complex nonlinear relationships between waveform
morphology and user identity, ensuring adaptability to variable signal conditions. Experimental
validation on the ECG-ID dataset achieved 98.8% accuracy, 95% sensitivity, an Area Under the
Curve (AUC) of 0.98, and a low false acceptance rate, outperforming typical wearable ECG
authentication systems that report accuracies between 90% and 95%. With an average processing
time of 8 seconds, the proposed method supports near real-time biometric verification suitable
for healthcare information systems, telehealth platforms, and IoT-based access control. These
findings establish a scalable, adaptive, and noise-resilient foundation for next-generation
physiological biometric authentication in real-world environments.

KaroueBbie ciaoBa: electrocardiogram biometrics, wavelet decomposition, QRS complex
detection, feedforward neural network, deep Ilearning classification, noise-resilient
authentication, biometric security.

Introduction

Biometric authentication has become a crucial part of today's security
systems, granting safe access to delicate data. Among the various biometric
modalities, electrocardiogram (ECG) signals are distinguished from others because
of their physiological uniqueness, stability, and being inherently resistant to
spoofing [1]. Unlike external traits like fingerprints or facial images, which are
susceptible to duplication, ECG signals reflect the heart’s electrical activity,
providing intrinsic liveness detection and robust protection against fraudulent
attacks [2]. However, the practical deployment of ECG-based authentication faces

challenges in real-world settings, such as wearable devices or telehealth

© DnexTpOoHHBINA HAYYHBIH KypHaN «mKkeHepHbIil BecTHUK JJoHa», 2007-2025



Nn:xenepublii BectHuk Jlona, Nel2 (2025)
ivdon.ru/ru/magazine/archive/n12y2025/10568

applications, where noise, electrode misplacement, motion artifacts, and
physiological variations degrade signal quality and reliability. Existing approaches
fall into two categories: classical signal-processing methods, which extract
interpretable features like QRS intervals and R—R distances but lack adaptability,
and deep-learning methods, which learn patterns from raw data but are sensitive to
noise and require large datasets. These limitations highlight the need for a more
robust and adaptive ECG biometric system [3].

To address these challenges, this study proposes a novel hybrid framework
that integrates wavelet-based signal preprocessing, QRS complex detection,
distance—deviation modeling, and an averaging-threshold mechanism with a
feedforward Multi-Layer Perceptron (MLP) neural network. Unlike prior
approaches, this framework combines the interpretability of signal processing with
the adaptability of deep learning, using extracted ECG features to train the MLP
for robust classification of nonlinear waveform patterns. The averaging-threshold
mechanism further enhances resilience to transient noise and physiological
fluctuations, ensuring stable authentication across multiple cardiac cycles [4].

From a physiological perspective, ECG signals capture the heart’s electrical
activity, characterized by the P wave (atrial depolarization), QRS complex
(ventricular depolarization), and T wave (ventricular repolarization), as illustrated
in Fig. 1. These components exhibit unique morphological and temporal variations

among individuals, forming a biometric signature suitable for authentication.

L1

Fig. 1. Physiological basis of ECG waveforms [5]
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This research aims to deliver a robust, accurate, and practical ECG-based
authentication system, validated on the publicly available ECG-ID dataset. The
remainder of this paper is organized as follows: Section 2 reviews related work and
limitations of existing ECG biometric systems. Section 3 details the proposed
hybrid methodology, including preprocessing, feature extraction, and MLP-based
classification. Section 4 presents experimental results and performance metrics.

Section 5 concludes the study and outlines future research directions.

Literature Review

Early research on ECG-based biometric authentication focused on
establishing its feasibility as a unique and secure identifier. Fuster et al.
demonstrated ECG’s potential in healthcare systems for patient data protection,
achieving 95% identification accuracy on controlled datasets [6]. Dong et al.
analyzed the discriminative power of QRS complex and QT interval features,
confirming their stability across sessions with an equal error rate (EER) of 3% [7].
Bedogni et al. proposed a single-lead ECG system using amplitude and temporal
coefficients post-QRS detection, reporting 90% accuracy with minimal hardware,
validating ECG’s practicality for low-resource settings [8]. However, these studies
highlighted ECG’s sensitivity to noise, electrode misplacement, and intra-subject
variability, underscoring the need for robust processing techniques [9].

Subsequent efforts aimed to improve feature representation and
classification accuracy. Tihak et al. introduced a Bayesian approach for sparse
feature selection and nonlinear classification, achieving 92% accuracy on the MIT-
BIH dataset but struggling with noisy signals [10]. Sholokhov et al. developed a
multi-task SVM framework, improving generalization across datasets with an EER
of 2.5% [11]. Achituve et al. extended this through Bayesian multitask learning,
enabling shared information across tasks and reaching 94% accuracy [12]. Despite

these advances, reliance on handcrafted features limited adaptability in real-world

© DnexTpOoHHBINA HAYYHBIH KypHaN «mKkeHepHbIil BecTHUK JJoHa», 2007-2025



Nn:xenepublii BectHuk Jlona, Nel2 (2025)
ivdon.ru/ru/magazine/archive/n12y2025/10568

conditions, where noise and electrode displacement significantly degrade
performance.

Recent developments in deep learning have introduced automated feature
extraction using Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs). For instance, CNN-based models have achieved up to 96%
accuracy on large datasets like PhysioNet but require substantial computational
resources and are prone to overfitting on smaller, noisy datasets [13]. Moreover,
these models often lack physiological interpretability, limiting their applicability in
critical domains like healthcare or defense.

To address these challenges, hybrid systems combining signal processing
and deep learning have emerged [14]. These approaches use techniques like
wavelet transforms or band-pass filtering to preprocess signals and extract robust
features, followed by neural network classification for adaptability. However,
existing hybrid models often focus on complex architectures like CNNs, which
increase computational demands without fully addressing noise resilience in
dynamic settings such as IoT devices or telehealth [15].

The present study proposes a novel hybrid ECG-based authentication
framework that enhances robustness by integrating wavelet-based preprocessing,
QRS complex detection, distance—deviation modeling, and an averaging-threshold
mechanism with a feedforward Multi-Layer Perceptron (MLP) classifier. Unlike
prior hybrid approaches that rely on raw signals or complex deep architectures, this
framework operates on extracted time—frequency and morphological features,
balancing interpretability, computational efficiency, and adaptability [16]. By
stabilizing feature extraction and authentication decisions across cardiac cycles, the
proposed system achieves superior performance in noise-prone, real-world

environments.
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Methods
System Architecture Overview: The proposed framework enhances ECG-
based biometric authentication by integrating wavelet-based signal processing with
a feedforward Multi-Layer Perceptron (MLP) classifier, achieving robust
performance in noisy, real-world environments. The system architecture, illustrated
in Fig. 2 as a block diagram of the processing pipeline, comprises four phases: data
acquisition, signal preprocessing and feature extraction, waveform modeling and
robustness enhancement, and deep-learning-based classification. Each phase
addresses specific challenges, such as noise, electrode displacement, and intra-
subject physiological variability, to ensure reliable authentication.
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Fig. 2. Proposed block diagram

Data Acquisition: The framework was developed and evaluated using the
ECG-ID database, which contains recordings from 90 subjects collected under
standardized acquisition conditions. To ensure analytical validity and eliminate the
risk of data leakage, the dataset was divided using a subject-independent protocol
[17], in which the ECG signals of each individual appeared exclusively in either
the training or the testing subset but never in both. This approach guarantees that
the model’s evaluation reflects its ability to generalize to unseen users rather than

memorizing individual signal patterns. The data were partitioned in a 70:30 ratio at
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the subject level, with 70% of participants used for training and 30% reserved for
independent performance testing.

Signal Pre-Processing and Feature Extraction: To mitigate noise,
baseline drift, and motion artifacts, a multi-stage preprocessing pipeline was
implemented. A band-pass filter (0.5-40 Hz, 4th-order Butterworth) was applied to
suppress low-frequency baseline wander and high-frequency electrical
interference, preserving the core frequency band of ECG morphology [18]. A
median filter with a sliding window of 200 ms further reduced impulsive noise
while maintaining the integrity of the QRS complex. Wavelet decomposition was
then performed using the Daubechies 4 (db4) mother wavelet across four
decomposition levels. The db4 wavelet was selected due to its close resemblance to
ECG waveform morphology and its ability to compactly represent sharp QRS
transitions while preserving P and T wave structures. The four-level decomposition
ensures adequate coverage of both low-frequency (baseline) and high-frequency
(QRS) components. This configuration follows established studies demonstrating
db4’s superior energy localization for ECG analysis [19].

From the reconstructed signals, fiducial points (P, Q, R, S, T) were identified
using an amplitude and slope-based detection algorithm adapted from the Pan—
Tompkins method [20], which computes the derivative, squaring, and moving-
window integration to detect R peaks robustly. Once R peaks were detected, the
relative temporal locations of P, Q, S, and T were determined based on local
extrema and slope changes within physiologically constrained intervals.
Quantitative descriptors such as R—R interval, QRS duration, R-peak amplitude,
and P-T interval were extracted.

Wave Analysis and Modelling: To enhance reliability under variable
conditions, a waveform modeling phase focuses on the morphologically stable
QRS complex. R peaks are detected using derivative-based methods, achieving

high precision even in noisy signals. For each subject, a reference template is
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generated from training samples, representing the mean QRS morphology. During
authentication, incoming ECG samples are compared to this template using
distance—deviation metrics, which quantify amplitude and shape similarity to
tolerate minor variations from electrode placement or physiological changes. An
averaging-threshold mechanism, applied over five cardiac cycles, stabilizes
similarity scores, reducing the impact of transient noise or artifacts. This novel
combination of distance—deviation modeling and averaging-thresholding ensures
consistent feature extraction, distinguishing the framework from prior hybrid
systems that rely solely on preprocessing or complex classifiers [21].

Classification and Output Generation: The final classification step was
performed using a feedforward Multi-Layer Perceptron (MLP) neural network that
operates on the extracted and modeled feature vectors. Each vector contained 20
normalized features, including time intervals, amplitude ratios, and averaged
distance—deviation scores. The MLP consisted of fully connected layers arranged
as follows: an input layer with 20 neurons, three hidden layers with 64, 32, and 16
neurons, each activated by Rectified Linear Units (ReLU), and a two-neuron
output layer employing Softmax activation to predict “authentic” or ‘“non-
authentic” classes. The model was trained using the Adam optimizer with a
learning rate of 0.001 and categorical cross-entropy loss for 100 epochs and a
batch size of 32. Training employed early stopping when validation loss failed to
improve for 10 consecutive epochs.

The MLP architecture was selected for its balance between interpretability,
low computational complexity, and real-time feasibility, especially for resource-
limited environments such as wearable or IoT devices. While recent lightweight
CNN and RNN models have also demonstrated competitive performance in real-
time biometrics, the use of an MLP here is justified by its direct compatibility with
pre-extracted statistical features and its ability to deliver high accuracy without

requiring large-scale parameter tuning. On standard hardware, the average
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authentication time per subject was approximately 8 seconds, demonstrating the
suitability of the proposed system for near real-time deployment.

Methodology: Figure 3 shows the block diagram of the proposed approach.
It consists of pre trained MLP classifier for the performance evaluation of ECG
signal classification for person authentication. In the proposed methodology the

steps as follows.

SE_:]?‘ISIS [ ECG Acquisition ] [ Filtering } [Perfon'nance Evaluation

Fig.3. Proposed methodology.

In operation, the system first acquires an ECG signal and preprocesses it to
remove noise and extract key features through filtering and wavelet analysis. The
QRS complex is then modeled to generate a user-specific template, from which
distance and deviation metrics are calculated relative to incoming signals. An
averaging-threshold mechanism is applied to stabilize the resulting similarity
measures, ensuring resilience to transient noise. The processed feature vectors are
then classified by the trained MLP, which outputs a binary decision—authentic or
non-authentic—based on the learned nonlinear mapping between physiological
patterns and user identity. By combining physiological signal understanding with
data-driven adaptability, the proposed hybrid system achieves an effective balance
of accuracy, robustness, and real-time capability, establishing a strong foundation

for secure biometric authentication in practical applications.

Results
The performance of the proposed hybrid ECG-based biometric
authentication framework was evaluated using the ECG-ID dataset to assess its
accuracy, robustness, and real-time feasibility. The results demonstrate that

integrating classical signal-processing methods with a feedforward Multi-Layer
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Perceptron (MLP) classifier significantly improves the system’s ability to handle
signal noise, physiological variability, and electrode displacement, all of which
typically degrade performance in ECG-based identification systems. The raw ECG
signal, as shown in Fig. 4, exhibits various artifacts such as baseline drift and
electrical interference. These distortions are typical of real-world acquisition

environments, underscoring the necessity of a robust preprocessing pipeline.
Input ECG Signal
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Fig. 4. Input ECG Signal

While the ECG signal is being recorded, natures more or less loud
contribution is mixed into it as well. After unwanted noise removal from the noisy
ECQG signal by using Band pass filter (BPF), the ECG signal is shown in Fig.5. It is
this step that helps to the quality and accuracy of the future signal processing.

Noise Removed Signal via Band-Pass Filter (BPF)
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Fig. 5. Noise removed signal via BPF
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PQRS points represent the key landmarks in the ECG signal, namely the P-
wave, QRS complex, and T-wave. Fig. 6 illustrates the identified PQRS points,

providing a visual representation of the critical features used for subsequent

analysis and feature extraction.

PQRS Points Representation
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Fig. 6. PQRS points representation

R-peaks detection of the QRS complex is highly accurate. Particularly
identified R peaks in the ECG signal, which is a basis of the further processing

steps are indicated in Fig. 7.

Detected R Peaks in ECG Signal
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Figure 7: Detected R in ECG Signal

A smoothing process is done in order to reduce the effect of noise and
irregularities of the ECG signal. The signal following smoothing is displayed in

Fig. 8 and the underlying cardiac activity is more evident.
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Smoothed ECG Signal
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Fig. 8. Smoothed Signal

The system with ECG-ID dataset had an accuracy of 98.8%, which is a good
indication of robust Ecg-based biometric authentication. The main performance
indicators as presented in Fig. 9 are 95, 99, and 98.8 where 95% is the sensitivity
(True Positive Rate, TPR), 99% is the specificity (True Negative Rate, TNR), and

the accuracy of the system to authenticate the true users and reject the impostors

respectively.
10- 98.8% Perforn'éasr?goeﬁ Metrics
0.8-
0.6-
04-
20.0%
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0.0~ X : |
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Fig. 9. Performance Metrics

The confusion matrix from Fig. 10 helps us assess how well the system
works. which confirms that the majority of genuine users were correctly
authenticated (95% true positives) and provides insight into the system’s

performance balance. Despite the relatively lower true-negative rate, the
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framework achieves strong robustness and consistency under noisy or unstable

conditions, which are common in practical deployments.

Confusion Matrix for ECG-Based Authentication System
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Fig. 10. Confusion Matrix

The Receiver Operating Characteristic (ROC) curve presented in Fig. 11
demonstrates an Area Under the Curve (AUC) value of 0.98, confirming excellent
discriminative power in distinguishing between authentic and non-authentic users.
The curve indicates that the system maintains high sensitivity even when
specificity increases, validating its stability under varying operating thresholds.

The results demonstrate that integrating classical signal analysis with deep-
learning classification significantly enhances system robustness compared to
traditional signal-processing or deep-learning-only approaches, as well as methods
explicitly designed for noise and variability. For instance, while conventional ECG
biometric systems relying solely on QRS feature extraction falter under noise, and
robust deep learning models like CNNs struggle with small, noisy datasets [22],
the proposed hybrid model achieves consistent performance across diverse
conditions. This is enabled by combining deterministic wavelet-based filtering and

feature extraction with adaptive MLP classification. The averaging-threshold
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mechanism plays a pivotal role in stabilizing authentication decisions,
outperforming adaptive filtering techniques by reducing decision variability across
multiple sessions and signal variations. This hybrid approach effectively balances
robustness and adaptability—a key challenge in physiological biometrics—making

it well-suited for real-world applications [23].

ROC Curve for ECG-Based Authentication System
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Fig. 11. ROC Curve for ECG-Based Authentication System

Conclusion

This study presents a hybrid ECG-based biometric authentication framework
that integrates wavelet-based signal processing with a feedforward Multi-Layer
Perceptron (MLP) classifier, achieving robust and accurate performance in noisy,
real-world conditions. By combining preprocessing, QRS complex modeling,
distance—deviation analysis, and an averaging-threshold mechanism, the
framework ensures stable feature extraction despite noise, electrode displacement,
and physiological variability. The MLP classifier, trained on these features,
delivers high discriminative power with computational efficiency, achieving 98.8%

accuracy, 95% sensitivity, and an AUC of 0.98 on the ECG-ID dataset. With a
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processing time of 8 seconds, the system is well-suited for real-time applications in
healthcare, telehealth, and IoT-based security.

The proposed approach bridges classical signal processing and deep
learning, offering a novel balance of interpretability and adaptability compared to
existing methods. However, the lower true-negative rate suggests potential for
refining decision thresholding. Future work could explore adaptive thresholding
based on signal quality, expand dataset diversity for better generalization, and
investigate multimodal fusion with signals like PPG to enhance robustness.
Advanced architectures, such as transformer-based models, may further improve
temporal feature capture while preserving interpretability. This framework
provides a scalable, practical solution for secure ECG-based authentication, paving
the way for reliable, physiology-driven biometric systems in dynamic

environments.
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