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Аннотация: Electrocardiogram (ECG)-based biometric authentication systems offer intrinsic 
resistance to spoofing due to their physiological uniqueness. However, their performance in 
dynamic real-world settings, such as wearable devices or stress-induced conditions, is often 
compromised by noise, electrode displacement, and intra-subject variability. This study proposes 
a novel hybrid framework that enhances robustness, ensuring high authentication accuracy and 
reliability in adverse conditions, through integrated wavelet-based signal processing for noise 
suppression and a deep-learning classifier for adaptive feature recognition. The system employs 
preprocessing, QRS complex detection, distance–deviation modeling, a statistical comparison 
method that quantifies morphological similarity between ECG templates by analyzing amplitude 
and shape deviations and an averaging-threshold mechanism, combined with a feedforward 
Multi-Layer Perceptron (MLP) neural network for classification. The MLP is trained on 
extracted ECG features to capture complex nonlinear relationships between waveform 
morphology and user identity, ensuring adaptability to variable signal conditions. Experimental 
validation on the ECG-ID dataset achieved 98.8% accuracy, 95% sensitivity, an Area Under the 
Curve (AUC) of 0.98, and a low false acceptance rate, outperforming typical wearable ECG 
authentication systems that report accuracies between 90% and 95%. With an average processing 
time of 8 seconds, the proposed method supports near real-time biometric verification suitable 
for healthcare information systems, telehealth platforms, and IoT-based access control. These 
findings establish a scalable, adaptive, and noise-resilient foundation for next-generation 
physiological biometric authentication in real-world environments.  
Ключевые слова: electrocardiogram biometrics, wavelet decomposition, QRS complex 
detection, feedforward neural network, deep learning classification, noise-resilient 
authentication, biometric security. 

Introduction 

Biometric authentication has become a crucial part of today's security 

systems, granting safe access to delicate data. Among the various biometric 

modalities, electrocardiogram (ECG) signals are distinguished from others because 

of their physiological uniqueness, stability, and being inherently resistant to 

spoofing [1]. Unlike external traits like fingerprints or facial images, which are 

susceptible to duplication, ECG signals reflect the heart’s electrical activity, 

providing intrinsic liveness detection and robust protection against fraudulent 

attacks [2]. However, the practical deployment of ECG-based authentication faces 

challenges in real-world settings, such as wearable devices or telehealth 
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applications, where noise, electrode misplacement, motion artifacts, and 

physiological variations degrade signal quality and reliability. Existing approaches 

fall into two categories: classical signal-processing methods, which extract 

interpretable features like QRS intervals and R–R distances but lack adaptability, 

and deep-learning methods, which learn patterns from raw data but are sensitive to 

noise and require large datasets. These limitations highlight the need for a more 

robust and adaptive ECG biometric system [3]. 

To address these challenges, this study proposes a novel hybrid framework 

that integrates wavelet-based signal preprocessing, QRS complex detection, 

distance–deviation modeling, and an averaging-threshold mechanism with a 

feedforward Multi-Layer Perceptron (MLP) neural network. Unlike prior 

approaches, this framework combines the interpretability of signal processing with 

the adaptability of deep learning, using extracted ECG features to train the MLP 

for robust classification of nonlinear waveform patterns. The averaging-threshold 

mechanism further enhances resilience to transient noise and physiological 

fluctuations, ensuring stable authentication across multiple cardiac cycles [4]. 

From a physiological perspective, ECG signals capture the heart’s electrical 

activity, characterized by the P wave (atrial depolarization), QRS complex 

(ventricular depolarization), and T wave (ventricular repolarization), as illustrated 

in Fig. 1. These components exhibit unique morphological and temporal variations 

among individuals, forming a biometric signature suitable for authentication. 

 
Fig. 1. Physiological basis of ECG waveforms [5] 
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This research aims to deliver a robust, accurate, and practical ECG-based 

authentication system, validated on the publicly available ECG-ID dataset. The 

remainder of this paper is organized as follows: Section 2 reviews related work and 

limitations of existing ECG biometric systems. Section 3 details the proposed 

hybrid methodology, including preprocessing, feature extraction, and MLP-based 

classification. Section 4 presents experimental results and performance metrics. 

Section 5 concludes the study and outlines future research directions.  

Literature Review 

Early research on ECG-based biometric authentication focused on 

establishing its feasibility as a unique and secure identifier. Fuster et al. 

demonstrated ECG’s potential in healthcare systems for patient data protection, 

achieving 95% identification accuracy on controlled datasets [6]. Dong et al. 

analyzed the discriminative power of QRS complex and QT interval features, 

confirming their stability across sessions with an equal error rate (EER) of 3% [7]. 

Bedogni et al. proposed a single-lead ECG system using amplitude and temporal 

coefficients post-QRS detection, reporting 90% accuracy with minimal hardware, 

validating ECG’s practicality for low-resource settings [8]. However, these studies 

highlighted ECG’s sensitivity to noise, electrode misplacement, and intra-subject 

variability, underscoring the need for robust processing techniques [9]. 

Subsequent efforts aimed to improve feature representation and 

classification accuracy. Tihak et al. introduced a Bayesian approach for sparse 

feature selection and nonlinear classification, achieving 92% accuracy on the MIT-

BIH dataset but struggling with noisy signals [10]. Sholokhov et al. developed a 

multi-task SVM framework, improving generalization across datasets with an EER 

of 2.5% [11]. Achituve et al.  extended this through Bayesian multitask learning, 

enabling shared information across tasks and reaching 94% accuracy [12]. Despite 

these advances, reliance on handcrafted features limited adaptability in real-world 
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conditions, where noise and electrode displacement significantly degrade 

performance. 

Recent developments in deep learning have introduced automated feature 

extraction using Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs). For instance, CNN-based models have achieved up to 96% 

accuracy on large datasets like PhysioNet but require substantial computational 

resources and are prone to overfitting on smaller, noisy datasets [13]. Moreover, 

these models often lack physiological interpretability, limiting their applicability in 

critical domains like healthcare or defense. 

To address these challenges, hybrid systems combining signal processing 

and deep learning have emerged [14]. These approaches use techniques like 

wavelet transforms or band-pass filtering to preprocess signals and extract robust 

features, followed by neural network classification for adaptability. However, 

existing hybrid models often focus on complex architectures like CNNs, which 

increase computational demands without fully addressing noise resilience in 

dynamic settings such as IoT devices or telehealth [15]. 

The present study proposes a novel hybrid ECG-based authentication 

framework that enhances robustness by integrating wavelet-based preprocessing, 

QRS complex detection, distance–deviation modeling, and an averaging-threshold 

mechanism with a feedforward Multi-Layer Perceptron (MLP) classifier. Unlike 

prior hybrid approaches that rely on raw signals or complex deep architectures, this 

framework operates on extracted time–frequency and morphological features, 

balancing interpretability, computational efficiency, and adaptability [16]. By 

stabilizing feature extraction and authentication decisions across cardiac cycles, the 

proposed system achieves superior performance in noise-prone, real-world 

environments. 
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Methods 

System Architecture Overview: The proposed framework enhances ECG-

based biometric authentication by integrating wavelet-based signal processing with 

a feedforward Multi-Layer Perceptron (MLP) classifier, achieving robust 

performance in noisy, real-world environments. The system architecture, illustrated 

in Fig. 2 as a block diagram of the processing pipeline, comprises four phases: data 

acquisition, signal preprocessing and feature extraction, waveform modeling and 

robustness enhancement, and deep-learning-based classification. Each phase 

addresses specific challenges, such as noise, electrode displacement, and intra-

subject physiological variability, to ensure reliable authentication.  

 
Fig. 2. Proposed block diagram  

 

Data Acquisition: The framework was developed and evaluated using the 

ECG-ID database, which contains recordings from 90 subjects collected under 

standardized acquisition conditions. To ensure analytical validity and eliminate the 

risk of data leakage, the dataset was divided using a subject-independent protocol 

[17], in which the ECG signals of each individual appeared exclusively in either 

the training or the testing subset but never in both. This approach guarantees that 

the model’s evaluation reflects its ability to generalize to unseen users rather than 

memorizing individual signal patterns. The data were partitioned in a 70:30 ratio at 
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the subject level, with 70% of participants used for training and 30% reserved for 

independent performance testing. 

Signal Pre-Processing and Feature Extraction: To mitigate noise, 

baseline drift, and motion artifacts, a multi-stage preprocessing pipeline was 

implemented. A band-pass filter (0.5–40 Hz, 4th-order Butterworth) was applied to 

suppress low-frequency baseline wander and high-frequency electrical 

interference, preserving the core frequency band of ECG morphology [18]. A 

median filter with a sliding window of 200 ms further reduced impulsive noise 

while maintaining the integrity of the QRS complex. Wavelet decomposition was 

then performed using the Daubechies 4 (db4) mother wavelet across four 

decomposition levels. The db4 wavelet was selected due to its close resemblance to 

ECG waveform morphology and its ability to compactly represent sharp QRS 

transitions while preserving P and T wave structures. The four-level decomposition 

ensures adequate coverage of both low-frequency (baseline) and high-frequency 

(QRS) components. This configuration follows established studies demonstrating 

db4’s superior energy localization for ECG analysis [19]. 

From the reconstructed signals, fiducial points (P, Q, R, S, T) were identified 

using an amplitude and slope-based detection algorithm adapted from the Pan–

Tompkins method [20], which computes the derivative, squaring, and moving-

window integration to detect R peaks robustly. Once R peaks were detected, the 

relative temporal locations of P, Q, S, and T were determined based on local 

extrema and slope changes within physiologically constrained intervals. 

Quantitative descriptors such as R–R interval, QRS duration, R-peak amplitude, 

and P–T interval were extracted. 

Wave Analysis and Modelling: To enhance reliability under variable 

conditions, a waveform modeling phase focuses on the morphologically stable 

QRS complex. R peaks are detected using derivative-based methods, achieving 

high precision even in noisy signals. For each subject, a reference template is 
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generated from training samples, representing the mean QRS morphology. During 

authentication, incoming ECG samples are compared to this template using 

distance–deviation metrics, which quantify amplitude and shape similarity to 

tolerate minor variations from electrode placement or physiological changes. An 

averaging-threshold mechanism, applied over five cardiac cycles, stabilizes 

similarity scores, reducing the impact of transient noise or artifacts. This novel 

combination of distance–deviation modeling and averaging-thresholding ensures 

consistent feature extraction, distinguishing the framework from prior hybrid 

systems that rely solely on preprocessing or complex classifiers [21]. 

Classification and Output Generation: The final classification step was 

performed using a feedforward Multi-Layer Perceptron (MLP) neural network that 

operates on the extracted and modeled feature vectors. Each vector contained 20 

normalized features, including time intervals, amplitude ratios, and averaged 

distance–deviation scores. The MLP consisted of fully connected layers arranged 

as follows: an input layer with 20 neurons, three hidden layers with 64, 32, and 16 

neurons, each activated by Rectified Linear Units (ReLU), and a two-neuron 

output layer employing Softmax activation to predict “authentic” or “non-

authentic” classes. The model was trained using the Adam optimizer with a 

learning rate of 0.001 and categorical cross-entropy loss for 100 epochs and a 

batch size of 32. Training employed early stopping when validation loss failed to 

improve for 10 consecutive epochs.  

The MLP architecture was selected for its balance between interpretability, 

low computational complexity, and real-time feasibility, especially for resource-

limited environments such as wearable or IoT devices. While recent lightweight 

CNN and RNN models have also demonstrated competitive performance in real-

time biometrics, the use of an MLP here is justified by its direct compatibility with 

pre-extracted statistical features and its ability to deliver high accuracy without 

requiring large-scale parameter tuning. On standard hardware, the average 
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authentication time per subject was approximately 8 seconds, demonstrating the 

suitability of the proposed system for near real-time deployment. 

Methodology: Figure 3 shows the block diagram of the proposed approach. 

It consists of pre trained MLP classifier for the performance evaluation of ECG 

signal classification for person authentication. In the proposed methodology the 

steps as follows. 

 
Fig.3. Proposed methodology. 

 

In operation, the system first acquires an ECG signal and preprocesses it to 

remove noise and extract key features through filtering and wavelet analysis. The 

QRS complex is then modeled to generate a user-specific template, from which 

distance and deviation metrics are calculated relative to incoming signals. An 

averaging-threshold mechanism is applied to stabilize the resulting similarity 

measures, ensuring resilience to transient noise. The processed feature vectors are 

then classified by the trained MLP, which outputs a binary decision—authentic or 

non-authentic—based on the learned nonlinear mapping between physiological 

patterns and user identity. By combining physiological signal understanding with 

data-driven adaptability, the proposed hybrid system achieves an effective balance 

of accuracy, robustness, and real-time capability, establishing a strong foundation 

for secure biometric authentication in practical applications. 

Results 

The performance of the proposed hybrid ECG-based biometric 

authentication framework was evaluated using the ECG-ID dataset to assess its 

accuracy, robustness, and real-time feasibility. The results demonstrate that 

integrating classical signal-processing methods with a feedforward Multi-Layer 
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Perceptron (MLP) classifier significantly improves the system’s ability to handle 

signal noise, physiological variability, and electrode displacement, all of which 

typically degrade performance in ECG-based identification systems. The raw ECG 

signal, as shown in Fig. 4, exhibits various artifacts such as baseline drift and 

electrical interference. These distortions are typical of real-world acquisition 

environments, underscoring the necessity of a robust preprocessing pipeline.  

 
Fig. 4.  Input ECG Signal 

 

While the ECG signal is being recorded, natures more or less loud 

contribution is mixed into it as well. After unwanted noise removal from the noisy 

ECG signal by using Band pass filter (BPF), the ECG signal is shown in Fig.5. It is 

this step that helps to the quality and accuracy of the future signal processing. 

 
Fig. 5. Noise removed signal via BPF 
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PQRS points represent the key landmarks in the ECG signal, namely the P-

wave, QRS complex, and T-wave. Fig. 6 illustrates the identified PQRS points, 

providing a visual representation of the critical features used for subsequent 

analysis and feature extraction. 

 
Fig. 6. PQRS points representation 

 

R-peaks detection of the QRS complex is highly accurate. Particularly 

identified R peaks in the ECG signal, which is a basis of the further processing 

steps are indicated in Fig. 7. 

 
Figure 7: Detected R in ECG Signal 

 

A smoothing process is done in order to reduce the effect of noise and 

irregularities of the ECG signal. The signal following smoothing is displayed in 

Fig. 8 and the underlying cardiac activity is more evident. 
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Fig. 8.  Smoothed Signal 

 

The system with ECG-ID dataset had an accuracy of 98.8%, which is a good 

indication of robust Ecg-based biometric authentication. The main performance 

indicators as presented in Fig. 9 are 95, 99, and 98.8 where 95% is the sensitivity 

(True Positive Rate, TPR), 99% is the specificity (True Negative Rate, TNR), and 

the accuracy of the system to authenticate the true users and reject the impostors 

respectively. 

 
Fig. 9.  Performance Metrics 

 

The confusion matrix from Fig. 10 helps us assess how well the system 

works. which confirms that the majority of genuine users were correctly 

authenticated (95% true positives) and provides insight into the system’s 

performance balance. Despite the relatively lower true-negative rate, the 



Инженерный вестник Дона, №12 (2025) 
ivdon.ru/ru/magazine/archive/n12y2025/10568 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2025 

framework achieves strong robustness and consistency under noisy or unstable 

conditions, which are common in practical deployments. 

 
Fig. 10.  Confusion Matrix 

 

The Receiver Operating Characteristic (ROC) curve presented in Fig. 11 

demonstrates an Area Under the Curve (AUC) value of 0.98, confirming excellent 

discriminative power in distinguishing between authentic and non-authentic users. 

The curve indicates that the system maintains high sensitivity even when 

specificity increases, validating its stability under varying operating thresholds. 

The results demonstrate that integrating classical signal analysis with deep-

learning classification significantly enhances system robustness compared to 

traditional signal-processing or deep-learning-only approaches, as well as methods 

explicitly designed for noise and variability. For instance, while conventional ECG 

biometric systems relying solely on QRS feature extraction falter under noise, and 

robust deep learning models like CNNs struggle with small, noisy datasets [22], 

the proposed hybrid model achieves consistent performance across diverse 

conditions. This is enabled by combining deterministic wavelet-based filtering and 

feature extraction with adaptive MLP classification. The averaging-threshold 
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mechanism plays a pivotal role in stabilizing authentication decisions, 

outperforming adaptive filtering techniques by reducing decision variability across 

multiple sessions and signal variations. This hybrid approach effectively balances 

robustness and adaptability—a key challenge in physiological biometrics—making 

it well-suited for real-world applications [23]. 

 

 
Fig. 11.  ROC Curve for ECG-Based Authentication System 

Conclusion 

This study presents a hybrid ECG-based biometric authentication framework 

that integrates wavelet-based signal processing with a feedforward Multi-Layer 

Perceptron (MLP) classifier, achieving robust and accurate performance in noisy, 

real-world conditions. By combining preprocessing, QRS complex modeling, 

distance–deviation analysis, and an averaging-threshold mechanism, the 

framework ensures stable feature extraction despite noise, electrode displacement, 

and physiological variability. The MLP classifier, trained on these features, 

delivers high discriminative power with computational efficiency, achieving 98.8% 

accuracy, 95% sensitivity, and an AUC of 0.98 on the ECG-ID dataset. With a 
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processing time of 8 seconds, the system is well-suited for real-time applications in 

healthcare, telehealth, and IoT-based security. 

The proposed approach bridges classical signal processing and deep 

learning, offering a novel balance of interpretability and adaptability compared to 

existing methods. However, the lower true-negative rate suggests potential for 

refining decision thresholding. Future work could explore adaptive thresholding 

based on signal quality, expand dataset diversity for better generalization, and 

investigate multimodal fusion with signals like PPG to enhance robustness. 

Advanced architectures, such as transformer-based models, may further improve 

temporal feature capture while preserving interpretability. This framework 

provides a scalable, practical solution for secure ECG-based authentication, paving 

the way for reliable, physiology-driven biometric systems in dynamic 

environments. 
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