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Аннотация: В работе представлен алгоритм расчёта тепловых процессов в цепной зоне 
трубчатых вращающихся печей, используемых для спекания нефелинового концентрата с 
известняком. Модель основана на тепловых и материальных балансах с учётом 
взаимодействия газового потока, слоя материала, пылевых частиц и футеровки. Алгоритм 
учитывает влияние геометрии и плотности цепной навески на теплообмен и интегрирован 
с подмоделями осевого движения материала и пылеуноса. Расчёт реализован в виде 
итерационной схемы, обеспечивающей согласование температур газа и материала. 
Алгоритм позволяет определять температурные распределения, тепловые потоки и потери, 
а также выполнять параметрическую оптимизацию режимов и конструкции печи. 
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Введение 

В последние годы усилилось внимание исследователей к внедрению 

современных методов автоматизации в управление трубчатыми 

вращающимися печами. Наиболее активно рассматриваются направления, 

связанные с применением программно реализованных датчиков и технологий 

усовершенствованного управления процессами. 

Под мягким датчиком понимается средство косвенного измерения, 

определение которого приведено в стандарте ГОСТ Р ИСО 15746-1-2016. При 

этом важно различать термины «мягкий датчик» и «виртуальный прибор». 

Первый представляет собой математическую модель, предназначенную для 

оценки параметров, которые не поддаются прямому измерению, тогда как 

виртуальный прибор — это программный инструмент, имитирующий 

функции реального измерительного устройства и взаимодействующий с 

физическими сенсорами для получения и обработки данных [1–3]. Технология 

мягких датчиков активно развивается и внедряется на промышленных 
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объектах, позволяя определять величины, недоступные для прямого 

измерения, что, в свою очередь, создает предпосылки для построения новых 

контуров регулирования [4–6]. В случае трубчатых вращающихся печей 

такими параметрами могут быть, например, высота слоя материала, его 

скорость перемещения или степень перемешивания. 

Другим направлением развития является применение 

усовершенствованных систем управления и оптимизации технологических 

процессов, основанных, в частности, на прогнозирующих моделях (ГОСТ Р 

ИСО 15746-1-2016). Такие подходы позволяют эффективно управлять 

объектами с выраженной инерционностью, нелинейностью, неустойчивостью 

отдельных контуров регулирования и взаимосвязанными многомерными 

параметрами [7–9]. Для трубчатых вращающихся печей, дополнительно 

характеризующихся параметрической неопределенностью и непостоянным 

запаздыванием сигналов измерения, применение методов 

усовершенствованного управления представляет собой перспективное 

направление исследований. 

В данной статье предлагается алгоритм расчёта зоны печи с 

теплообменным устройствами (цепной завесой) на примере мокрой трубчатой 

вращающейся печи с двухсторонним питанием для спекания нефелинового 

концентрата с известняком на производстве глинозема. Предложенную 

подмодель планируется использовать как составную часть модели трубчатой 

вращающейся печи в составе системы предиктивного управления.  

Параметры для расчёта модели и данные для её последующей 

верификации были взяты из научной литературы на примере печей 

Пикалевского глиноземного завода [10–12]. 

Предложенный алгоритм расчёта основывается на математических 

моделях цементных печей опубликованных в [13] и методике расчёта длины 

цепной зоны [14]. Рассматриваемый алгоритм учитывает отличия в подаче 



Инженерный вестник Дона, №2 (2026) 
ivdon.ru/ru/magazine/archive/n2y2026/10758 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2026 

пыли, а также связывает расчёт теплообмена в цепной зоне с подмоделью 

осевого движения  [15] и пылеуноса [16]. Кроме того, в представленном 

алгоритме описаны методы итеративного решения системы уравнений модели 

и приведены рекомендации по выбору оптимальных значений расчётных 

параметров.  

Разработанный алгоритм расчёта цепной зоны вращающейся печи 

реализует последовательное моделирование теплового и материального 

балансов с учётом теплообмена между газом, материалом, пылью и 

футеровкой. На первом этапе определяется состав сырья и продуктов горения, 

расход воздуха и газов, а также содержание влаги и углекислого газа, 

выделяющихся в процессе нагрева. Далее рассчитываются массовые и 

объемные расходы компонентов, а также состав газовой смеси на входе и 

выходе зоны. 

Затем выполняется энергетический баланс, включающий определение 

энтальпии материала, газов и пыли при заданных температурах. На основе 

этого вычисляются тепловые потоки, потери в окружающую среду и 

количество теплоты, необходимое для нагрева и испарения влаги. Внутренний 

итерационный цикл определяет температуру газа на входе из условия 

равенства энтальпий притока и оттока. 

После получения температурного поля определяется 

среднелогарифмический температурный напор, средние температуры газа и 

материала, а также геометрические и аэродинамические параметры зоны — 

скорость газового потока, степень заполнения, число Рейнольдса и Нуссельта. 

На их основе рассчитывается коэффициент теплоотдачи, параметры цепной 

навески и площадь футеровки. 

Итерационный цикл верхнего уровня выполняет подбор температуры 

материала и остаточной влажности на выходе из зоны так, чтобы рассчитанная 

длина цепной завесы совпадала с заданной. При этом после каждой итерации 
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обновляются параметры теплообмена, температуры стенок и коэффициенты 

теплопередачи до достижения сходимости. 

Входные параметр 

Входные параметры можно условно разделить на четыре крупные 

группы: константы и справочные данные, параметры печи, параметры 

потоков, параметры расчёта. 

Группа «Параметры печи». Значения для параметров данной группы 

взяты из источника [14]. К ним относятся: внешний диаметр кожуха печи 

𝐷𝐷внеш= 3.6 м, внутренний диаметр кожуха печи 𝐷𝐷внут = 3.4 м, толщина 

футеровки печи 𝑆𝑆ф= 0.1 м, плотность навески цепей в зоне 𝐹𝐹ц/𝐹𝐹ф= 3.7, длина 

от начала печи до начала цепной зоны 𝐿𝐿𝑠𝑠 = 3.6 м, протяжённость цепной зоны 

𝐿𝐿ц= 23.4 м, поперечный шаг гирлянды цепи 𝑆𝑆1= 1.32 м, продольный шаг 

гирлянды цепи 𝑆𝑆2= 2 м, длина цепи 𝑙𝑙ц= 4.5 м, диаметр звена цепи 𝑑𝑑ц= 0.025 м, 

скорость вращения печи n= 1.8 об/мин, производительность печи по клинкеру 

𝐺𝐺кл= 39000 кг/ч, угол наклона печи α= 2.3 градуса, продольный шаг навески 

𝑙𝑙2= 1 м, температура окружающей среды 𝑇𝑇ос= 20 ℃. 

Группа «Параметры материальных потоков». Значения для параметров 

данной группы взяты из источников [10,14,17].  

Параметры, характеризующие материал на входе в цепную зону: 

температура материала на входе в зону 𝑇𝑇м′= 46 ℃, расход сухой шихты 

𝐺𝐺сх.  шихта= 53960 кг/ч, влажность шихты 𝑊𝑊1= 29%, массовая доля потерь при 

прокалке в исходной сухой шихте ППП= 26.%, массовая доля Al2O3 в 

исходной сухой шихте 𝐴𝐴𝐴𝐴2𝑂𝑂3
′= 11.6%, массовая доля Na2O в исходной сухой 

шихте 𝑁𝑁𝑁𝑁2𝑂𝑂′= 7.2%, массовая доля CaO в исходной сухой шихте 𝐶𝐶𝐶𝐶𝐶𝐶′= 32.7%, 

массовая доля SiO2 в исходной сухой шихте 𝑆𝑆𝑆𝑆𝑆𝑆2′= 17.7%, массовая доля Fe2O3 

в исходной сухой шихте 𝐹𝐹𝐹𝐹2𝑂𝑂3′= 1.6%, Массовая доля CO2 в исходной сухой 

шихте 𝐶𝐶𝑂𝑂2′= 26%, массовая доля CaCO3 в исходной сухой шихте 𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂3′= 
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58.7%, массовая доля нефелина в исходной сухой шихте 𝑁𝑁𝑁𝑁𝑁𝑁′= 32.3%, высота 

слоя материала h = 0.7 м.  

Параметры, характеризующие газ на выходе из цепной зоны: 

температура газа на выходе из зоны 𝑇𝑇г′′= 180 ℃, коэффициент избытка воздуха 

𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎= 1.16, массовые расход топлива (мазут) 𝐺𝐺т= 4430 кг/час, влажность 

(массовая доля воды) топлива 𝑊𝑊т= 3%, массовая доля водорода в топливе H= 

11.8%, массовая доля углерода в топливе С= 85%, массовая доля азота в 

топливе N= 0.6%, массовая доля серы в топливе S= 0.5%. 

Параметры, характеризующие пылеунос и пылеосаждение в цепной 

зоне: массовая доля нефелина в составе пыли 𝑁𝑁𝑁𝑁𝑁𝑁П= 50.5%, массовая доля 

CaCO3 в составе пыли 𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂3П= 49%, процент пыли от общего пылевыноса, 

который уносится из цепной зоны 𝑓𝑓𝑢𝑢0= 60%, процент пыли от общего 

пылевозврата, который оседает в цепной зоне 𝑓𝑓𝑟𝑟0= 40%, общий пылеунос 𝐺𝐺п= 

14000 кг/ч, общий пылевовзрат 𝐺𝐺п.воз= 13000 кг/ч. 

Высота слоя материала рассчитывается в отдельной подмодели осевого 

движения материала вдоль печи. В данной работе подмодель осевого 

движения не рассматривается, но она основывается на работе [18], при этом 

скорость осевого движения в цепной зоне рассчитывается по уравнениям из 

работы [14]. 

Группа «Константы и справочные данные». К ним относятся: степень 

черноты корпуса печи ε= 0.95 по материалам источника [18], энтальпия 

соединений 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂3, 𝐻𝐻𝐶𝐶𝑂𝑂2, 𝐻𝐻𝐹𝐹𝐹𝐹2𝑂𝑂3 , 𝐻𝐻𝐻𝐻2𝑂𝑂−𝑙𝑙𝑙𝑙𝑙𝑙, 𝐻𝐻𝐻𝐻2𝑂𝑂−𝑣𝑣𝑣𝑣𝑣𝑣, 𝐻𝐻𝑂𝑂2, 𝐻𝐻𝑁𝑁2 (кДж/кг) 

рассчитанная по уравнениям теплосодержания [18], энтальпия нефелина 𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁 

(кДж/кг), рассчитанная через удельную теплоёмкость при различных 

температурах на основе данных из работы [19], а также 𝜌𝜌 плотность (кг/м3), 

динамическая вязкость 𝜇𝜇 (Па·с) и теплопроводность 𝜆𝜆 (Вт/(м·К)) при 

различных температурах и атмосферном давлении газов для CO2, O2, N2 и H2O 

на основе данных из [20–23]. 
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Группа «Параметры расчёта». К ним относятся: критерий завершения 

итераций при вычислении длины цепной зоны 𝑡𝑡𝑡𝑡𝑡𝑡1= 0.0001, максимальное 

число итераций основного цикла по температуре материала на выходе из 

цепной 𝑀𝑀𝑀𝑀1= 200, счётчик итераций основного цикла по температуре 

материала на выходе из цепной зоны i= 0, шаг численного дифференцирования 

по температуре 𝑧𝑧1= 0.01, критерий сходимости итераций по уточнению 

температуры газового потока 𝑡𝑡𝑡𝑡𝑡𝑡2= 0.001, максимальное число итераций по 

температуре газа 𝑀𝑀𝑀𝑀2= 50, счётчик итераций по температуре газа j= 0, нижняя 

граница интервала при вычислении температуры газа на входе в цепную зону 

методом Брента a= 0 ℃, верхняя граница интервала при вычислении 

температуры газа на входе в цепную зону методом Брента b= 2000 ℃, шаг 

численного дифференцирования по влажности 𝑧𝑧3= 0.01, максимальное число 

итераций по влажности материала на выходе из цепной зоны 𝑀𝑀𝑀𝑀3= 200, 

счётчик итераций по влажности материала на выходе из цепной зоны k= 0, 

флаг, который может быть нулем и единицей, сигнализирующий о том, что 

длина цепной зоны становится нечувствительной к изменению влажности  

p= 0,  начальное приближение температуры материала на выходе 𝑇𝑇м′′= 96 ℃, 

начальное приближение остаточной влажности материала 𝑊𝑊2= 7%, начальное 

приближение температуры газа на входе в зону Tг′ = 𝑇𝑇г′′, начальное 

приближение температуры корпуса в зоне цепей Тк= 100 ℃, критерий 

сходимости итераций по уточнению температуры корпуса печи 𝑡𝑡𝑡𝑡𝑡𝑡4= 0.5, 

максимальное число итераций по температуре корпуса печи 𝑀𝑀𝑀𝑀4= 50, счётчик 

итераций по температуре корпуса печи f= 0. 

Малый шаг численного дифференцирования 𝑧𝑧1 и критерий сходимости 

𝑡𝑡𝑡𝑡𝑡𝑡1 обеспечивают устойчивость итерационного процесса при расчёте 

температурного баланса методом Ньютона. Максимальное число итераций по 

температуре и влажности 𝑀𝑀𝑀𝑀1, 𝑀𝑀𝑀𝑀3, 𝑀𝑀𝑀𝑀4 выбрано с запасом для 

предотвращения преждевременного прерывания цикла в случае замедленной 
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сходимости. Начальные приближения температуры 𝑇𝑇м′′ и влажности 𝑊𝑊2 

соответствуют типовым условиям печи [14]. При задании начальных 

приближений учитывается, что при 𝑇𝑇м′′ > 0, 𝑊𝑊2 = 0. Для первой итерации 

расчёта температура газа на входе принимается равной температуре газа на 

выходе.  

Алгоритм 

Алгоритм расчёта подмодели цепной зоны (рис. 1) основан на 

последовательном согласовании материальных, пылевых, газовых и тепловых 

балансов с определением расчётной длины цепной зоны как выходного 

параметра. Входными данными являются расход и состав влажной шихты, её 

начальная влажность, параметры газового потока и продуктов сгорания 

топлива, геометрия печи, цепной навески и футеровки, а также 

теплофизические свойства компонентов. 

На первом этапе формируется входной материальный поток в цепную 

зону. Определяются расход влажной шихты, удельный расход по отношению 

к производительности печи и массовые расходы основных компонентов, 

включая оксиды, карбонаты и влагу. Для воды отдельно учитываются 

свободная и связанная формы, что необходимо для последующего расчёта 

фазовых превращений. 

Параллельно формируется пылевой поток. Рассчитываются удельные 

расходы пыли на входе и выходе цепной зоны, а также массовый состав 

возвращаемой пыли. Состав пыли определяется по молярным соотношениям 

химических компонентов, после чего вычисляются удельные массы пылевых 

компонентов в газовом потоке до и после цепной зоны. Часть пыли, 

изменяющая массу материала в постели, учитывается в материальном балансе 

цепной зоны. Геометрия слоя материала описывается через степень 

заполнения поперечного сечения печи. 
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Рис. 1. – Алгоритм расчёта подмодели цепной зоны трубчатой вращающейся 

печи для спекания нефелинового концентрата с известняком [составлено 

авторами] 
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Для этого по внутреннему диаметру печи и высоте слоя определяется 

площадь сегмента, занимаемого материалом, и вычисляется отношение этой 

площади к площади полного сечения. Геометрия цепной навески учитывается 

через параметры гирлянды, включая центральный угол и стрелу прогиба, по 

которым определяется коэффициент гирляндной навески, используемый далее 

при расчёте теплообмена. После этого выполняется расчёт выходного 

материального потока без учёта пыли, а затем с учётом пылеуноса и возврата 

пыли (рис. 2). Определяются расходы и удельные массы компонентов 

материала на выходе из цепной зоны, а также новая влажность материала. Эти 

данные используются для расчёта энтальпий материала до и после цепной 

зоны. 

Газовый расчёт включает определение количества водяного пара, 

образующегося при испарении свободной и связанной влаги, количества 

углекислого газа, выделяющегося при разложении карбонатов, а также состава 

продуктов сгорания топлива. На этой основе формируется состав газовой 

смеси до и после цепной зоны и рассчитывается расход газового потока. 

Тепловой баланс цепной зоны включает энтальпии материала, пыли и 

газовой фазы, теплоту испарения влаги и теплопотери через корпус печи. 

Теплопотери рассчитываются с учётом теплопроводности футеровки и 

теплообмена наружной поверхности корпуса с окружающей средой за счёт 

конвекции и излучения. Температура корпуса уточняется в отдельном 

итерационном контуре до достижения сходимости (рис. 3). Энтальпия газа на 

входе в цепную зону определяется двумя способами: через тепловой баланс и 

через сумму энтальпий компонентов газовой смеси. Для согласования этих 

значений используется метод Брента, позволяющий определить температуру 

газа на входе в цепную зону, при которой выполняется тепловой баланс. 
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Рис. 2. – Внутренний блок «Расчёт длины цепной зоны» [составлено 

авторами] 
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В процессе итераций пересчитываются теплофизические свойства 

газовой смеси, включая плотность, вязкость и теплопроводность. 

 

Рис. 3. – Внутренний блок «Расчёт температуры корпуса печи» [составлено 

авторами] 

На основе рассчитанных свойств газа определяются критерии движения 

газовой фазы и коэффициент теплоотдачи в цепной зоне. Используя 

рассчитанный коэффициент теплоотдачи, определяется количество теплоты, 

передаваемое от газа к материалу, и вычисляется расчётная длина цепной 

зоны. 
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Согласование расчётной длины цепной зоны с заданной геометрией 

выполняется во внешнем итерационном контуре. В качестве переменных 

коррекции используются температура и влажность материала на выходе из 

цепной зоны (рис. 4). Для этого оценивается чувствительность длины зоны к 

изменению этих параметров методом конечных разностей, после чего 

выполняется их корректировка. Коррекция температуры и влажности 

ограничивается физически допустимыми диапазонами. 

 

Рис. 4. – Внутренний блок «Вычисление значения температуры материала на 

выходе из цепной зоны» и Внутренний блок «Вычисление значения 

влажности материала на выходе из цепной зоны» [составлено авторами] 

Итерационный процесс продолжается до тех пор, пока расчётная длина 

цепной зоны не совпадёт с заданной в пределах допуска, либо пока не будет 

достигнуто максимальное число итераций. Алгоритм содержит контроль 

сходимости по температуре газа, температуре корпуса, температуре и 

влажности материала, а также по длине цепной зоны. 

В результате расчёта определяются температура газа на входе и выходе 

из цепной зоны, температура и влажность материала на выходе, температура 

корпуса печи, состав и расход газового потока, тепловые потоки и 

теплопотери, а также расчётная длина цепной зоны. Алгоритм предназначен 



Инженерный вестник Дона, №2 (2026) 
ivdon.ru/ru/magazine/archive/n2y2026/10758 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2026 

для использования при инженерных расчётах тепловых режимов 

вращающихся печей и может быть включён в состав комплексных моделей и 

систем предиктивного управления процессом спекания нефелинового 

концентрата.  
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