

Поперечные колебания газоотводящего ствола из полимерной

термореактивной оболочки «Фуранфлекс».

Г.Ю. Орешин

Московский государственный строительный университет, г. Москва.

Аннотация: В предоставленной статье рассматриваются теоретический порядок и практическое решение задачи по расчету поперечных колебаний термореактивной полимерной самонесущей трубы-оболочки «Фуранфлекс» с конечным числом степеней свободы при равномерном закреплении по высоте. Детально рассмотрен порядок создания универсального расчетного алгоритма для определения собственных частот колебаний трубы с равномерным закреплением по высоте. При создании алгоритма и расчете собственных частот, определения коэффициентов построения эпюр используется программный комплекс Mathcad. Статья может быть интересна инженерампроектировщикам, специалистам по расчету на динамику и прочность конструкций, специалистам теплогенерирующих компаний и ТЭЦ, преподавателям и студентам ВУЗов строительной отрасли.

Ключевые слова: собственный частоты, полимерная труба «фуранфлекс», собственные значения матрицы.

При проведении капитального ремонта в котельных для теплогенерирующих компаний или создания отдельного газоотводящего ствола (ГОС), как одним из вариантов технологического решения можно воспользоваться технологией «Фуранфлекс». Данная технология позволяет создать самонесущий газоотводящий ствол из современного композитного термореактивного полимерного материала, созданного на основе кислотостойких фуран-эпоксидных смол. Подробное описание технологий с примером применения в промышленном варианте изложено в источниках [1,2].

В данной статье рассмотрим вариант использования самонесущей трубы «Фуранфлекс» с равномерным закреплением по всей высоте трубы. (Рис.1).

В рассматриваемом примере расстояние между закреплениями-опорами составляет 1.2 метра.

Рассмотрим расчет поперечных собственных колебаний данной трубы.

Рис.1. Труба с равномерным закреплением в качестве опор по высоте.

Расчет поперечных свободных колебаний

Рассмотрим нашу трубу, как стержень с распределением сосредоточенных масс по высоте на расстоянии 1.2 м друг от друга. Очевидна необходимость полного динамического расчета конструкции. Расчет симметричных параметрических колебаний оболочки подробно изложен в источнике [3]. Расчет резонансных соотношений частот при несимметричных колебаниях представлен в [4].

Стержень закреплен внизу шарнирно-неподвижной опорой и по высоте шарнирно-подвижными опорами в количестве- 24 шт, расположенных на расстоянии 1,2м друг от друга (Рис. 2)

Мы имеем систему с 25 степенями динамической свободы. Составим уравнение движения системы.

На основании принципа независимости действия сил можно записать полные перемещения масс, как сумму перемещения от действия каждой силы отдельно.

Рис. 2. Расчетная схема трубы с принятыми условиями закрепления.

Система уравнений (1)

$$y_{1} = \delta_{11}F_{1} + \delta_{12}F_{2} + \dots + \delta_{1n}F_{n}$$

$$y_{2} = \delta_{21}F_{1} + \delta_{22}F_{2} + \dots + \delta_{2n}F_{n}$$

$$(1)$$

$$y_{n} = \delta_{n1}F_{1} + \delta_{n2}F_{2} + \dots + \delta_{nn}F$$

где

$$F_{1} = -m\ddot{y}_{1}$$

$$F_{2} = -m\ddot{y}_{2}$$

$$\dots$$

$$F_{n} = -m\ddot{y}_{n}$$

после подстановки соотношения силы в уравнение получаем систему дифференциальных уравнений свободных колебаний с n степенями свободы (n=25).

$$\begin{cases} y_{1} = -\delta_{11}m\ddot{y}_{1} - \delta_{12}m\ddot{y}_{2} - \dots - \delta_{1n}m\ddot{y}_{n} \\ y_{2} = -\delta_{21}m\ddot{y}_{1} - \delta_{22}m\ddot{y}_{2} - \dots - \delta_{2n}m\ddot{y}_{n} \\ \dots \\ y_{n} = -\delta_{n1}m\ddot{y}_{1} - \delta_{n2}m\ddot{y}_{2} - \dots - \delta_{nn}m\ddot{y}_{n} \end{cases}$$
(2)

Если вывести систему из состояния равновесия, после устранения причины она совершает свободные колебания, которые можно представить системой из дифференциальных уравнений. Число уравнений равно числу степеней свободы-25:

$$y_{1} = a_{1} \sin(\omega t + \varphi);$$

$$\ddot{y}_{1} = -a_{1}\omega^{2} \sin(\omega t + \varphi)$$

$$y_{n} = a_{n} \sin(\omega t + \varphi);$$

$$\ddot{y}_{n} = -a_{n}\omega^{2} \sin(\omega t + \varphi)$$

(3)

Подставим (3) в (2) и сократим на общий член $sin(\omega t + \varphi)$

$$\begin{cases} a_{1} = ma_{1}\omega^{2}\delta_{11} + ma_{2}\omega^{2}\delta_{12} + \dots + ma_{n}\omega^{2}\delta_{1n} \\ a_{2} = ma_{1}\omega^{2}\delta_{21} + ma_{2}\omega^{2}\delta_{22} + \dots + ma_{n}\omega^{2}\delta_{2n} \\ \dots \\ a_{n} = ma_{1}\omega^{2}\delta_{n1} + ma_{2}\omega^{2}\delta_{n2} + \dots + ma_{n}\omega^{2}\delta_{nn} \end{cases}$$
(4)

Принимаем $\lambda = \frac{1}{\omega^2}$

Совершив перенос всех членов системы уравнений в одну сторону и поделив их на ω^2 , получим систему линейных алгебраических уравнений, которая имеет тривиальное решение (в случае отсутствия колебания) и нетривиальное-когда определитель системы равен нулю.

$$\begin{cases} (m\delta_{11} - \lambda)a_1 + m\delta_{12}a_2 + \dots + m\delta_{1n}a_n = 0 \\ m\delta_{21}a_1 + (m\delta_{22} - \lambda)a_2 + \dots + m\delta_{2n}a_n = 0 \\ \dots & \dots & \dots \\ m\delta_{n1}a_1 + m\delta_{n2}a_2 + \dots + (m\delta_{nn} - \lambda)a_n = 0 \end{cases}$$
(5)

$$\det(A) = \begin{vmatrix} m\delta_{11} - \lambda \cdot m\delta_{12} \dots m\delta_{1n} \\ m\delta_{1n} \cdot m\delta_{22} - \lambda \dots m\delta_{2n} \\ \dots \\ m\delta_{n1} \cdot m\delta_{n2} \dots m\delta_{nn} - \lambda \end{vmatrix} = 0$$
(6)

Система линейных уравнений может может быть представлена в матричном виде[5]:

$$([A] - \lambda [E]) \{V\} = \{0\}_{(7)}$$

где, [*E*]- единичная матрица. Вектор амплитуд представлен {V}

$$\{V\} = \{a_1a_2a_3...a_n\}^T$$

Задача решения уравнения (7) в линейной алгебре называется задачей на определение собственных значений матрицы [А].

Определение значений коэффициентов матрицы

Для определения коэффициентов представим нашу трубу в виде неразрезной многпролетной балки (Рис. 3).

Рис. 3. Расчетная схема неразрезной балки для определения коэффициентов.

Приложим поочередно к точкам расположения масс силу F=1.

Расчет проведем с использованием методики решения уравнения трех моментов [6,7].

Расчет многопролетной неразрезной балки

Для решения задачи по расчету и построению эпюры моментов и поперечных сил в представленной балке используем методику- «уравнение трех моментов».

В неразрезных многопролетных балках кинематический анализ покажет наличие лишних опор. Их количеством определяется степень статической неопределимости расчетной схемы в задаче.

Для решения задачи по расчету представленной статически неопределимой балки, воспользуемся методом сил. В этом случае, существенно эффективнее и намного удобнее провести решение с помощью уравнения трех моментов.

Всю длину балки раздробим на отдельные, статически определимые частибалки. Врежем шарниры в балку над опорами. Добавим сосредоточенные моменты в местах этих шарниров M₀, M₁... M_n.

Записываем левую часть систему уравнений трех моментов и определяем одновременно M₀ и M_n [5].

Далее проводим построение грузовой эпюры моментов M_p и эпюры поперечных сил Q_p во всех пролетах и, если есть - консолях балки от действия внешней нагрузки.

Проведём расчет значений площадей эпюр моментов Ω_i, i=1...n в пролетах. Определим расстояния от центров тяжести этих площадей (a_i) и (b_i) до опоры соответствующего пролета.

Составляем окончательную систему уравнений [7].

$$M_{i-1}l_{i} + 2M_{i}(l_{i} + l_{i+1}) + M_{i+1}l_{i+1} = -6\left(\frac{\Omega_{i}a_{i}}{l_{i}} + \frac{\Omega_{i+1}b_{i+1}}{l_{i+1}}\right)$$

Дале необходимо произвести решение системы «уравнений трех моментов». В предоставленной статье решение будет произведено с использованием функционала lsolve программного комплекса Mathcad. Этим методом определяются неизвестные моменты в балке над «лишними» опорами M_i, i=1...n-1.

Суммируем и получаем искомую эпюру моментов в неразрезной балке. Впоследствии строим эпюру поперечных сил по формуле [8]:

$$Q_i = Q_{pi} + (M_i - M_{i-1})/l_i$$

для пролетов i=1...n, где Q_{pi} – поперечные силы балки.

Для приложения силы преобразуем нашу балку в статически определимую методом врезания шарниров в опорных точках и приложим силу (Рис. 4.)

Рис. 4. Расчетная схема балки при приложении единичной нагрузки.

$$\begin{cases} M_{0}l_{1} + 2M_{1}(l_{1} + l_{2}) + M_{2}l_{2} = -6\left(\frac{\Omega_{1}a_{1}}{l_{1}} + \frac{\Omega_{2}b_{2}}{l_{2}}\right) \\ M_{1}l_{2} + 2M_{2}(l_{2} + l_{3}) + M_{3}l_{3} = -6\left(\frac{\Omega_{2}a_{2}}{l_{2}} + \frac{\Omega_{3}b_{3}}{l_{3}}\right) \\ \dots \\ M_{23}l_{24} + 2M_{24}(l_{24} + l_{25}) + M_{25}l_{25} = -6\left(\frac{\Omega_{24}a_{24}}{l_{24}} + \frac{\Omega_{25}b_{25}}{l_{25}}\right) \end{cases}$$
(8)

После преобразований, учитывая $M_0 = 0, M_{25} = 0$, имеем:

$$\begin{cases} 4M_1 + M_2 = -\frac{3}{8}l \\ M_1 + 4M_2 + M_3 = 0 \\ \dots & (9) \\ M_{23} + 4M_{24} + = 0 \end{cases}$$

Решение будем искать с помощью программного комплекса Mathcad. Эпюра результатов расчета уравнения трех моментов для первого пролета (Рис. 5.). Матрица коэффициентов «А» системы уравнений (9) и решение системы уравнений [7,8]:

Рис. 5. Эпюра результатов расчета уравнения трех моментов для первого пролета.

Построим грузовую эпюру для первого пролета (Рис. 6).

Рис. 6. Грузовая эпюра для первого пролета.

Далее необходимо просуммировать значения этих двух эпюр.

Для этого приводим значения в векторе М к графическому закону и представим это в виде зависимости момента от координаты х [9]:

$$\begin{split} \mathsf{M2b}(\mathsf{x}) &\coloneqq \frac{(-\mathsf{M})_1}{1.2} \cdot \mathsf{x} (\mathsf{x} < 1.2) + \left[\left(\frac{\mathsf{M}_2 - \mathsf{M}_1}{1.2} \right) \cdot (\mathsf{x} - 1.2) + \mathsf{M}_1 \right] \cdot (1.2 < \mathsf{x} < 2.4) - \left[\frac{\mathsf{M}_3 - \mathsf{M}_2}{1.2} \cdot (\mathsf{x} - 2.4) + \mathsf{M}_2 \right] \cdot (2.4 < \mathsf{x} < 3.6) \dots \\ &+ \left[\frac{\mathsf{M}_4 - \mathsf{M}_3}{1.2} \cdot (\mathsf{x} - 3.6) + \mathsf{M}_3 \right] \cdot (3.6 < \mathsf{x} < 4.8) - \left[\frac{\mathsf{M}_5 - \mathsf{M}_4}{1.2} \cdot (\mathsf{x} - 4.8) + \mathsf{M}_4 \right] \cdot (4.8 \le \mathsf{x} \le 6) \dots \\ &+ \left[\frac{\mathsf{M}_6 - \mathsf{M}_5}{1.2} \cdot (\mathsf{x} - 6) + \mathsf{M}_5 \right] \cdot (6 \le \mathsf{x} \le 7.2) - \left[\frac{\mathsf{M}_7 - \mathsf{M}_5}{1.2} \cdot (\mathsf{x} - 7.2) + \mathsf{M}_5 \right] \cdot (7.2 \le \mathsf{x} \le 8.4) \dots \\ &+ \left[\frac{\mathsf{M}_8 - \mathsf{M}_7}{1.2} \cdot (\mathsf{x} - 8.4) + \mathsf{M}_7 \right] \cdot (8.4 \le \mathsf{x} \le 9.6) - \left[\frac{\mathsf{M}_9 - \mathsf{M}_8}{1.2} \cdot (\mathsf{x} - 9.6) + \mathsf{M}_8 \right] \cdot (9.6 \le \mathsf{x} \le 10.8) \dots \\ &+ \left[\frac{\mathsf{M}_1 - \mathsf{M}_9}{1.2} \cdot (\mathsf{x} - 10.8) + \mathsf{M}_9 \right] \cdot (10.8 \le \mathsf{x} \le 12) - \left[\frac{\mathsf{M}_{11} - \mathsf{M}_{10}}{1.2} \cdot (\mathsf{x} - 12) + \mathsf{M}_{10} \right] \cdot (12 \le \mathsf{x} \le 13.2) \dots \\ &+ \left[\frac{\mathsf{M}_{12} - \mathsf{M}_{11}}{1.2} \cdot (\mathsf{x} - 13.2) + \mathsf{M}_{11} \right] \cdot (13.2 \le \mathsf{x} \le 14.4) - \left[\frac{\mathsf{M}_{13} - \mathsf{M}_{12}}{1.2} \cdot (\mathsf{x} - 14.4) + \mathsf{M}_{12} \right] \cdot (14.4 \le \mathsf{x} \le 15.6) \dots \\ &+ \left[\frac{\mathsf{M}_{16} - \mathsf{M}_{15}}{1.2} \cdot (\mathsf{x} - 13.2) + \mathsf{M}_{11} \right] \cdot (15.6 \le \mathsf{x} \le 16.8) - \left[\frac{\mathsf{M}_{15} - \mathsf{M}_{14}}{1.2} \cdot (\mathsf{x} - 16.8) + \mathsf{M}_{14} \right] \cdot (16.8 \le \mathsf{x} \le 18) \dots \\ &+ \left[\frac{\mathsf{M}_{16} - \mathsf{M}_{15}}{1.2} \cdot (\mathsf{x} - 18) - \mathsf{M}_{15} \right] \cdot (18 \le \mathsf{x} \le 19.2 \dots \\ &+ \left(-\mathsf{I} \right) \left[\frac{\mathsf{M}_{17} - \mathsf{M}_{16}}{1.2} \cdot (\mathsf{x} - 21.6) + \mathsf{M}_{19} \right] \cdot (21.6 \le \mathsf{x} \le 22.8) + \left[\frac{\mathsf{M}_{18} - \mathsf{M}_{17}}{1.2} \cdot (\mathsf{x} - 20.4) + \mathsf{M}_{17} \right] \cdot (20.4 \le \mathsf{x} \le 21.6) \dots \\ &+ \left(-\mathsf{I} \right) \left[\frac{\mathsf{M}_{22} - \mathsf{M}_{21}}{1.2} \cdot (\mathsf{x} - 21.6) + \mathsf{M}_{19} \right] \cdot (24 \le \mathsf{x} \le 25.2) + \left[\frac{\mathsf{M}_{23} - \mathsf{M}_{22}}{1.2} \cdot (\mathsf{x} - 25.2) + \mathsf{M}_{22} \right] \cdot (25.2 \le \mathsf{x} \le 26.4) \dots \\ &+ \left(-\mathsf{I} \right) \left[\frac{\mathsf{M}_{24} - \mathsf{M}_{23}}{1.2} \cdot (\mathsf{x} - 26.4) + \mathsf{M}_{23} \right] \cdot (26.4 \le \mathsf{x} \le 27.6) + \left[\frac{\mathsf{O} - \mathsf{M}_{24}}{1.2} \cdot (\mathsf{x} - 27.6) + \mathsf{M}_{24} \right] \cdot (27.6 \le \mathsf{x} \le 28.8) \right]$$

Эпюра результатов расчета уравнения трех моментов для первого пролета в графическом изображении аналитически заданной зависимости моментов от координаты х представлена на Рис 7. Как мы видим, она без искажений дублирует эпюру на Рис. 5 [5,7].

Затем произведем расчет суммарной эпюры. Просуммируем значения моментов из эпюры, полученное решение системы уравнения трех моментов и эпюры единичной силы [9,10]

(Рис. 8.).

 $M_{sum}(x) := M2_{b}(x) + (-M1(x))$

Рис. 7. Эпюра результатов расчета уравнения трех моментов для первого пролета в графическом изображении аналитической зависимости.

Рис. 8. Итоговая суммарная эпюра для первого пролета.

Проведем аналогичную операцию для второго пролета.

Уравнение трех моментов для второго пролета примет вид [5,7]:

$$\begin{cases} 4M_1 + M_2 = -\frac{3}{8}l \\ M_1 + 4M_2 + M_3 = -\frac{3}{8}l \\ \dots \\ M_{23} + 4M_{24} + = 0 \end{cases}$$

Итоговая суммарная эпюра для второго пролёта представлена на Рис. 9.

Рис. 9. Итоговая суммарная эпюра для второго пролета.

Проведем аналогичную операцию для третьего пролета.

Итоговая суммарная эпюра для третьего пролёта представлена на Рис. 10.

Рис. 10. Итоговая суммарная эпюра для третьего пролета.

Далее будут представлены эпюры следующих пролетов (Рис. 10, Рис. 11).

Рис. 10. Итоговая эпюра для четвертого пролета.

Рис. 11. Итоговая эпюра для пятого и шестого пролета.

Аналогично строятся эпюры для других пролетов. Проведем расчет и анализ коэффициентов. Представим только некоторую часть коэффициентов [7,8].

$$\begin{split} \delta_{1,1,1} &\coloneqq \int_{0}^{28.8} \left(M_{sum}(x) \right)^2 dx = 0.025 \\ \delta_{2,2,2} &\coloneqq \int_{0}^{28.8} \left(M_{sum2}(x) \right)^2 dx = 0.019 \\ \delta_{2,2,2} &\coloneqq \int_{0}^{28.8} \left(M_{sum2}(x) \right)^2 dx = 0.019 \\ \delta_{3,1,1} &\coloneqq \int_{0}^{28.8} \left(M_{sum3}(x) \cdot M_{sum3}(x) \right) dx = 2.126 \times 10^{-3} \end{split}$$

$$\begin{split} & \delta_{224x} := \int_{0}^{28.8} \left(M_{sum}(x) \cdot M_{sum2}(x) \right) dx = -7.977 \times 10^{-3} \quad \delta_{322x} := \int_{0}^{28.8} \left(M_{sum2}(x) \cdot M_{sum3}(x) \right) dx = -6.384 \times 10^{-3} \\ & \delta_{344x} := \int_{0}^{28.8} \left(M_{sum4}(x) \right)^2 dx = 0.019 \end{split}$$

$$\begin{split} & \delta_{44} := \int_{0}^{28.8} \left(M_{sum}(x) \cdot M_{sum4}(x) \right) dx = -5.654 \times 10^{-4} \quad \delta_{64} := \int_{0}^{28.8} \left(M_{sum4}(x) \cdot M_{sum6}(x) \right) dx = 1.677 \times 10^{-3} \\ & \delta_{44} := \int_{0}^{28.8} \left(M_{sum2}(x) \cdot M_{sum4}(x) \right) dx = 1.71 \times 10^{-3} \end{split}$$

$$\delta_{43} := \int_{0}^{28.8} \left(M_{sum3}(x) \cdot M_{sum4}(x) \right) dx = -6.271 \times 10^{-3} \qquad \delta_{66} := \int_{0}^{28.8} \left(M_{sum6}(x) \right)^2 dx = 0.019$$

Анализируя эпюры и результаты коэффициентов, можно сделать вывод, что перемножение эпюр с расстоянием друг от друга более пяти пролетов не имеет смысла, т.к. значения коэффициентов близки к нулевому значению [9].

Сформируем матрицу коэффициентов. Формировать её будем отдельно по столбцам, т.к. мы сталкиваемся с функциональными ограничениями комплекса Mathcad.

$\begin{pmatrix} \circ_{11} \\ & \circ_{12} \\ & & (\delta_{13}) \\ & & (\delta_{14}) \end{pmatrix}$	$\left(\delta_{15}\right)$ (s)	$\begin{pmatrix} 0 \end{pmatrix}$ $\begin{pmatrix} 0 \end{pmatrix}$	$\begin{pmatrix} 0 \end{pmatrix}$	$\begin{pmatrix} 0 \end{pmatrix}$	$\left(\begin{array}{c} 0 \end{array} \right)$
$\left \begin{array}{c} \delta_{21} \\ \delta_{22} \\ \end{array} \right \left \begin{array}{c} \delta_{22} \\ \delta_{23} \\ \end{array} \right \left \begin{array}{c} \delta_{24} \\ \delta_{24} \\ \end{array} \right $	δ_{25} $\begin{pmatrix} \delta_{16} \\ - \end{pmatrix}$	δ ₂₇ 0	0	0	0
$\left \begin{array}{c} \delta_{31} \\ \delta_{32} \\ \end{array} \right \left \begin{array}{c} 25 \\ \delta_{33} \\ \delta_{33} \\ \end{array} \right \left \begin{array}{c} 24 \\ \delta_{34} \\ \delta_{34} \\ \end{array} \right $	δ	δ ₃₇ δ ₃₈	0	0	0
$\begin{vmatrix} 51\\ \delta_{41} \end{vmatrix}$ $\begin{vmatrix} 53\\ \delta_{42} \end{vmatrix}$ $\begin{vmatrix} 53\\ \delta_{42} \end{vmatrix}$ $\begin{vmatrix} 54\\ \delta_{42} \end{vmatrix}$	δ35 δ36	$\left \begin{array}{c} \delta_{47} \\ \delta_{48} \end{array} \right $	δ49	0	0
$\left \begin{array}{ccc} \delta_{41} \\ \delta_{52} \\ \delta_{52} \\ \end{array} \right \left \begin{array}{ccc} \delta_{43} \\ \delta_{52} \\ \delta_{53} \\ \end{array} \right \left \begin{array}{ccc} \delta_{43} \\ \delta_{53} \\ \delta_{53} \\ \end{array} \right \left \begin{array}{ccc} \delta_{43} \\ \delta_{53} \\ \delta_{53} \\ \end{array} \right \left \begin{array}{ccc} \delta_{53} \\ \delta_{53} \\ \delta_{53} \\ \end{array} \right \left \begin{array}{ccc} \delta_{53} \\ \delta_{53} \\ \delta_{53} \\ \end{array} \right \left \begin{array}{ccc} \delta_{53} \\ \delta_{53} \\ \delta_{53} \\ \end{array} \right \left \begin{array}{ccc} \delta_{53} \\ \delta_{53} \\ \delta_{53} \\ \end{array} \right \left \begin{array}{ccc} \delta_{53} \\ \delta_{53} \\ \delta_{53} \\ \end{array} \right \left \begin{array}{ccc} \delta_{53} \\ \delta_{53} \\ \delta_{53} \\ \delta_{53} \\ \end{array} \right \left \begin{array}{ccc} \delta_{53} \\ \delta_{53} \\ \delta_{53} \\ \delta_{53} \\ \delta_{53} \\ \end{array} \right \left \begin{array}{ccc} \delta_{53} \\ \delta_{53}$	δ ₄₆	δ57 δ50	δ59	⁸ 510	0
351 352 353 354	δ55 δ56	δ.7 δ.0	δ ₆₉	δ ₆₁₀	⁸ 611
$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 62 \\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 63 \end{bmatrix} = \begin{bmatrix} 0\\ 64 \end{bmatrix}$	δ ₆₅ δ ₆₆	S S	δ ₇₉	δ ₇₁₀	δ ₇₁₁
$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} \delta_{72} \\ \delta_{73} \end{bmatrix} \begin{bmatrix} \delta_{74} \\ \delta_{74} \end{bmatrix}$	δ ₇₅ δ ₇₆		δ89	δ ₈₁₀	δ ₈₁₁
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} \delta_{83} \\ \delta_{84} \end{bmatrix}$ $\begin{bmatrix} \delta_{84} \\ \delta_{84} \end{bmatrix}$	δ ₈₅ δ ₈₆	⁰ 87 ⁰ 88	δοο	δ910	δ ₉₁₁
0 0 δ_{94}	δ95 δ96	⁰ 97 ⁰ 98	δ100	δ ₁₀₁₀	δ_{1011}
	δ ₁₀₅ δ ₁₀₆	δ ₁₀₇ δ ₁₀₈	διιο	δ ₁₁₁₀	δ_{1111}
$\delta_{1}^{\langle 1 \rangle} := \begin{bmatrix} 0 & \langle 2 \rangle \\ \delta_{2}^{\langle 2 \rangle} := \begin{bmatrix} 0 & \langle 3 \rangle \\ \delta_{3}^{\langle 3 \rangle} & 0 & \langle 4 \rangle \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \langle 4 \rangle \end{bmatrix} $	$0 \qquad \delta_{116} (7)$	$\left \begin{array}{c} \delta_{117} \\ \end{array} \right \left \begin{array}{c} \delta_{118} \\ \end{array} \right \left \begin{array}{c} \delta_{0} \\ \end{array} \right $	δ	δ1210 (11)	δ ₁₂₁₁
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0 \begin{vmatrix} \delta^{\langle 6 \rangle} := \\ 0 \\ \end{vmatrix} \begin{vmatrix} 1 & 0 \\ \delta^{\langle 1 \rangle} := \\ 0 \\ \end{vmatrix}$	$\left \delta_{127} \right \delta^{(8)} := \left \delta_{128} \right \delta^{(9)} :=$	$\left \begin{array}{c} \sigma_{129} \\ s \end{array} \right \delta^{(10)} :=$	$\begin{vmatrix} 1210 \\ \delta_{1210} \end{vmatrix} \delta^{(1)} :=$	δ ₁₃₁₁
	0 0	0 δ ₁₃₈	⁰ 139	δ1 410	δ ₁₄₁₁
		0 0	⁸ 149	8	δ1511
		0 0	0	01510	δ
					0
	0 0		0	0	0
	0 0	0 0	0	0	0
	0 0	0 0	0	0	0
	0 0	0 0	0	0	0
	0 0	0 0	0	0	0
					0

Из-за ограниченных возможностей масштабирования всю таблицу изобразить в разборчивом виде не представляется возможным. (Рис. 12.) Продемонстрируем скриншот рабочего пространства комплекса Mathcad.

Рис. 12. Таблица коэффициентов. (Скриншот рабочего пространства комплекса Mathcad).

Воспользовавшись встроенным функционалом eigenvals в Mathcad, решим

задачу линейной алгебры на определение собственных значений матрицы[δ].

Произведём расчет массы элемента трубы на одном пролете и момента инерции трубы. m=17.304 kg,

$$I_x = \frac{1}{2} \cdot \frac{\pi}{32} \cdot d^4 (1 - \frac{d_1}{d^4})$$

I_x= 3.732*10⁻⁴ M⁴ E=7.3*10¹⁰ Πa

Итоговая матрица, собственные значения которой нужно определить:

$$m\delta = m \cdot \frac{\delta}{E \cdot I_x}$$

Получаем значения собственных характеристических чисел λ :

		1			1
$\lambda := eigenvals(m\delta) =$	1	2.282·10 ⁻⁸	λ := eigenvals (mð) =	10	1.356 [.] 10 ⁻⁸
	2	2.273 [.] 10 ⁻⁸		11	1.228 [.] 10 ⁻⁸
	3	2.2 [.] 10 ⁻⁸		12	1.13 [.] 10 ⁻⁸
	4	2.098 [.] 10 ⁻⁸		13	1.05 [.] 10 ⁻⁸
	5	2.006 [.] 10 ⁻⁸		14	9.66 [.] 10 ⁻⁹
	6	1.885 [.] 10 ⁻⁸		15	8.835 [.] 10 ⁻⁹
	7	1.739 [.] 10 ⁻⁸		16	8.258 [.] 10 ⁻⁹
	8	1.595 [.] 10 ⁻⁸		17	7.815 [.] 10 ⁻⁹
	9	1.47.10-8		18	7.349 [.] 10 ^{.9}
	10	1.356 [.] 10 ⁻⁸		19	6.872 [.] 10 ⁻⁹
	11	1.228 [.] 10 ⁻⁸		20	6.539 [.] 10 ⁻⁹
	12	1.13 [.] 10 ⁻⁸		21	6.344 [.] 10 ^{.9}
	13	1.05 [.] 10 ⁻⁸		22	5.721 [.] 10 ⁻⁹
	14	9.66 [.] 10 ^{.9}		23	5.815 [.] 10 ⁻⁹
	15	8.835 [.] 10 ⁻⁹		24	6.081 [.] 10 ⁻⁹
	16			25	

Учитывая, принятые ранее условия, что $\lambda = \frac{1}{\omega^2}$ получаем собственные частоты колебаний самонесущей трубы «Фуранфлкекс» при равномерном закреплении по всей длине трубы с шагом 1.2 метра:

Таким образом в данной статье были приведены результаты и методика расчета самонесущей полимерной термореактивной трубы «Фуранфлекс».

Значения колебаний параметров течения продуктов сгорания котла, которые можно рассмотреть, как частоту вынуждающей силы, равны 1 гц (по данным производителя котельного оборудования). Данные значения не приближены к полученным собственным частотам колебаний трубы, потому резонансные явления не возникают.

Литература

- Орешин Г.Ю. Современная технология защиты, ремонта, восстановления дымоходных и вентиляционных каналов от коррозии, конденсата, разрушения с использованием полимерного термопластического вкладыша Фуранфлекс // Инженерный вестник Дона, 2018. №1. URL: ivdon.ru/ru/magazine/archive/n1y2018/4752
- Орешин Г.Ю. Создание многоствольных конструкций промышленных труб с использованием самонесущего термопластического вкладыша Фуранфлекс // Инженерный вестник Дона, 2018. №1. URL: ivdon.ru/ru/magazine/archive/n1y2018/4754
- Орешин Г.Ю. Динамическое воздействие возмущающего фактора, обусловленного изменением параметра колебательной системы на цилиндрическую оболочку газоотводящего термопластического канала

«Фуранфлекс» // Инженерный вестник Дона, 2020. №1. URL: ivdon.ru/ru/magazine/archive/N1y2020/6285

- Karnovsky Igor A. Theory of Arched Structures. Strength, Stability, Vibration. London: Springer, 2012. pp. 19-26.
- Баженов В.А, Перельмутер А.В, Шишов О.В. Строительная механика. Компьютерные технологии и моделирование. М.: Издательский дом ACB, 2014. 911 с.
 - Karnovsky Igor A. Theory of Arched Structures. Strength, Stability, Vibration. London: Springer, 2012. pp. 19-26.
 - Соловей М.А., Мищенко О.А Расчет неразрезной балки. Киев: КНУБА, 2013. С. 4-45.
 - 8. Соловей М.А., Мищенко О.А., Свешников О.Г. Кинематический анализ стержневых систем. Киев: КНУБА, 2012. С. 4-44.
 - Анохин Н.Н., Строительная механика в примерах и задачах. Часть 1. 4-е изд. М: Издательство АСВ, 2016. С. 7-90.
 - 10. Wei Lu, Ding Zhou, Zhi Chen Practical Calculation of Cable-Stayed Arch Bridge Lateral Stability scientific.net. 2014. №9. pp. 1586-1592.

References

- 1. Oreshin G.Y. Inzhenernyj vestnik Dona. 2018. №1. URL: ivdon.ru/ru/magazine/archive/n1y2018/4752
- Oreshin G.Y. Inzhenernyj vestnik Dona. 2018. №1. URL: ivdon.ru/ru/magazine/archive/n1y2018/4754
- 3. Oreshin G.Y. Inzhenernyj vestnik Dona. 2020. №1. URL: ivdon.ru/ru/magazine/archive/N1y2020/6285
- Karnovsky Igor A. Theory of Arched Structures. Strength, Stability, Vibration. London: Springer, 2012. pp. 19-26.
- Bazhenov V.A, Perel'muter A.V, SHishov O.V. Stroitel'naya mekhanika. Komp'yuternye tekhnologii i modelirovanie [Construction mechanics. Computer technologies and modeling]. M.: Izdatel'skij dom ASV, 2014. 911 p.
- Karnovsky Igor A. Theory of Arched Structures. Strength, Stability, Vibration. London: Springer, 2012. pp. 19-26.

- Solovej M.A., Mishchenko O.A. Raschet nerazreznoj balki. [Calculation of a continuous beam.]. Kiev: KNUBA, 2013. pp. 4-45.
- 8. Solovej M.A., O.A. Mishchenko, O.G. Sveshnikov Kinematicheskij analiz sterzhnevyh sistem [Kinematic analysis of rod systems]. Kiev: KNUBA, 2012. pp. 4-44.
- 9. Anohin N.N. Stroitel'naya mekhanika v primerah i zadachah. CHast' 1. [Construction mechanics in examples and tasks. Part 1]. 4-e izd. M: Izdatel'stvo ASV, 2016. pp. 7-90.
- 10. Wei Lu, Ding Zhou, Zhi Chen Practical Calculation of Cable-Stayed Arch Bridge Lateral Stability scientific.net. 2014. №9. pp. 1586-1592.