Влияние органических веществ на свойства шлакощелочного бетона

И.И. Романенко, И.Н. Петровнина

Пензенский государственный университет архитектуры и строительства, Пенза

Аннотация: Представлены результаты исследования усадки, механических свойств и долговечность шлакощелочного бетона модифицированным машинным и растительным маслом. Для определения влияния масел были протестированы физико-механические свойства (время схватывания, прочность на сжатие, автогенная Экспериментальные результаты показывают, что использование масла в качестве модификатора структуры шлакощелочного бетона может существенно снизить автогенную усадку шлакощелочного бетона за счёт уменьшения поверхностного натяжения и более плотной внутренней структуры. Установлено, что эмульгированные масла обеспечивают более высокие физико-механические свойства у бетонов по сравнению с не эмульгированными маслами. Время схватывания также выше, чем в составах без органического модификатора.

Ключевые слова: граншлак, органические вещества, масло моторное, эмульгирование, вяжущее, сроки схватывания, прочность, усадка.

Исследователи установили, что активация щелочью молотых шлаков, зол электростанций позволяет решить проблему низкой прочности в раннем возрасте для вяжущих на основе [1, 2]. Как в России, так и за рубежом проведены исследования ПО получению бетонов эксплуатационными свойствами на основе шлакощелочных бетонов (ШЩБ) [3-5]. Использование шлакового вяжущего и на их основе бетонов позволяет сократить использование портландцемента и снизить выбросы в атмосферу углекислого газа. ШЩБ характеризуются высокой прочностью, сопротивлением к химическому воздействию, морозостойкость, низкой теплотой гидратации. [6, 7].

В тоже время эти бетоны обладают высокой усадкой, которая является одним из основных факторов, способствующих образованию трещин в раннем возрасте [8]. Усадка ШЩБ проявляется в двух формах и в основном в раннем возрасте: усадка при высыхании и автогенная усадка. На данный момент не установлено с высокой точностью какой вид усадки преобладает

[9]. Исследователями из Китая и Индии установили, что усадка ШЩБ в 1,7—2,0 раза больше, чем у бетона на основе портландцемента [10]. Высокая усадка бетона способствует снижению эксплуатационных свойств и долговечности из-за образования трещин.

Для снижения усадки, исследователи ШЩБ применяли расширяющие добавки, которые препятствуют усадке бетона в раннем возрасте [11]. Применение гипса в ШЩБ оказывает негативное побочное воздействие на свойства бетонов, на основе активированных щелочью молотых шлаков [2, 4, 5].

Направление с использованием легких наполнителей и демпферов внутренних напряжений не привели к существенным результатам из-за высокой прибавочной стоимости [8].

Основная цель исследования — изучить влияние моторного (ММ) и растительного-подсолнечного (РМ) масел и эмульгированных на способность снижения величины усадки в ШЩБ.

Материалы и методики исследований

В качестве исходного компонента ШЩВ применяли молотый граншлак ООО «Северсталь» с удельной поверхностью S_{yg} =4120 см²/г, водный раствор NaOH сухой остаток (30 г/100 мл), силикат натрия (жидкое стекло δ =1,15 г/см³) с массовым соотношением SiO_2 к Na_2O как 2,5. Вода затворения смеси – питьевая. В качестве модификаторов применяли: машинное моторное мало (ММ) марки «Роснефть Maximum 15W-40», плотность - 888 кг/м³, вязкость – 15,0×10-6 м²/с, рH=7; растительное - подсолнечное масло (РМ): рH=4, плотность - 920—927 кг/м³, вязкость — 60,6×10-6 м²/с.

В исследовании использовался щелочной раствор активатора твердения с растворо шлаковым отношением (Р/Ш) 0,5. Дозировка масел составляло 3% от массы шлака. Активатор твердения шлака готовили путем смешивания

силиката натрия (Na₂SiO₃) и гидроксида натрия (7,5M NaOH) в соотношении 2,5 по массе.

В качестве эмульгатора масла применяли Spak-80 (Сорбитан моноолеат) для создания "обратных" эмульсий (вода в масле) с ГЛБ 4,3 ($C_{35}H_{64}O_{11}$).

Эмульгированные масла получали по следующей методике.

Растительное масло было помещено в коническую колбу в количестве 60% от общего количества модификатора и нагрето до 60 °C на водяной бане, после чего перемешивалось со скоростью 900 об/мин в течение 20-25 минут. В другую коническую колбу с постоянной скоростью перемешивания в течение 20 минут добавили 37 % от общего объёма воды и эмульгатор в количестве 3,0%. В колбу с маслом добавлена смесь из второй колбы и перемешена в течение ещё 20 минут. На выходе получается эмульсия молочно-белого цвета, которая использовалась в ШЩБ через 20 мин.

В таблице 1 представлены данные по исследованию сроков схватывания шлакощелочного теста.

Таблица 1 Сроки схватывания шлакощелочной пасты

Р/Ш=0,45	Модификаторы				
Сроки схватывания, мин	К	MM	PM	ГММ	ГРМ
Начало	15	40	45	56	77
Конец	34	59	63	87	125

Начальное и конечное время схватывания контрольной смеси без добавок модификаторов составляет 15 и 34 минуты соответственно. При добавлении ММ схватывание пасты происходит замедление. Это можно объяснить адсорбцией масла на поверхности частиц шлака и экранированием для доступа щелочи к частицам шлака. При введении в смесь РМ

увеличивает время схватывания как относительно контрольного состава, так и состава с ММ.

При добавлении гомогенизированного моторного и растительного масел время начальной и конечной схватки увеличиваются относительно не гомогенизированных масел. Замедление процесса гидратации шлакового вяжущего происходит из-за образования нерастворимой плёнки на частицах шлака, вызванного добавлением масла и реакцией омыления между СаО и жирной кислотой. Жирная кислота может адсорбироваться на частицах Са(ОН)2, образуя мицеллы, состоящие из ионов жирных кислот и кальциевых солей жирных кислот, которые могут препятствовать ранней реакции гидратации между частицами вяжущего [9]. Замедление начальных и конечных сроков схватывания при использовании ГММ и ГРМ составляет 273 %, 156 % и 413 %, 268 % соответственно. Таким образом можно за счет недорогих материалов регулировать сроки схватывания шлакощелочного вяжущего.

Результаты автогенной усадки всех образцов мелкозернистых ШЩБ представлены в таблице 2.

Из анализа данных таблицы 2 видно, что усадка контрольного образца в возрасте 7 суток составляет 0,07 мм/м. При введении модификаторов структуры на основе масел снижается. В возрасте 7 суток значения аутогенной усадки образцов из ШЩБ с добавлением ММ, РМ, ГММ и ГРМ составляет 0,05 мм/м, 0,046 мм/м, 0,032 мм/м и 0,019 мм/м соответственно, что значительно ниже значений контрольного образца.

В первый день автогенная усадка всех смесей увеличивается медленно. Считается, что образец может набухать из-за гидратации связующего вещества, и эта часть набухания может компенсировать часть усадки в первый день. Рост автогенной усадки ускоряется через сутки. Контрольный

образец демонстрирует наибольшую усадку не только в первые дни, но и на всем отрезке наблюдения.

Таблица 2 Аутогенная усадка мелкозернистых ШЩБ в возрасте до 7 суток твердения в нормальных условиях (T=20±2°C, W=90%)

Состав	Усадка образцов в возрасте до 7 суток, (мм/м)						
	1	2	3	4	5	6	7
Контрольный	0,0050	0,021	0,036	0,045	0,057	0,063	0,070
MM	0,0023	0,015	0,023	0,032	0,043	0,045	0,050
PM	0,0020	0,016	0,022	0,029	0,039	0,044	0,046
ГММ	0,0010	0,013	0,016	0,019	0,024	0,025	0,032
ГРМ	0,0010	0,012	0,014	0,016	0,018	0,019	0,019

Примечание. Состав мелкозернистого ШЩБ: шлак: песок кварцевый $(M_{\kappa p}=2,3)$: щелочной активатор твердения: вода: органическая добавка (масло) = 1,0:3,0:0,08:0,42:0,03

Образец с ГРМ показывает наименьшую автогенную усадку через на всем временном интервале наблюдения. На 7-й день после заливки автогенная усадка образца с ГРМ 0,019 мм/м, что ниже показаний у образца с ГММ на 40%. Благотворное влияние ГММ на усадку, возможно, обусловлено в первую очередь снижением поверхностного натяжения в поровой воде [2, 6, 7]. Применение ГММ также приводит к снижению поверхностного натяжения и уменьшает автогенную усадку. Ещё одной возможной причиной быть уменьшения усадки может задержка гидратации, вызванная образованием нерастворимой плёнки на частицах шлака. Также это может быть связано с тем, что добавление масла в ШЩБ препятствует свободному проникновению воды и движению воды по капиллярам.

Теоретически обосновать явление уменьшения усадки бетона с маслом можно за счет реакции между компонентом жирной кислоты в ММ, РМ и

щелочным активатором твердения шлака. Эту реакцию обычно называют реакцией омыления, механизм которой схож с процессом производства мыла. Считается, что эта реакция может уменьшить напряжение, вызванное усадкой, а химические процессы могут замедлить гидратацию. Для подтверждения этой химической реакции необходимы дальнейшие исследования.

Прочность на сжатие ШЩБ с модификаторами структуры представлена в таблице 3.

Таблица 3 Кинетика набора прочности образцов ШЩБ при твердении в нормальных условиях

No	Р/Ш	Модификатор	Дозировка модификатора,	Прочность на сжатие, МПа в возрасте, сут.			
ПП			%	3	7	28	
1	0,5	_	3	46,0	55,4	69,8	
2	0,5	MM	3	34,9	45,1	59,9	
3	0,5	PM	3	30,0	42,6	60,1	
4	0,5	ГММ	3	33,4	45,8	63,1	
5	0,5	ГРМ	3	23,8	46,3	66,4	

Введение в состав ШЩБ модификаторов на основе масел приводит к снижению прочности на сжатие, особенно в раннем возрасте. Прочность на сжатие контрольной смеси без добавок на 7-й день составляет 55,4 МПа, в то время как прочность образцов с ММ и РМ составляет 45,1 и 42,6 МПа соответственно. На 28-й день прочность на сжатие образцов с ММ и РМ составляет 59,9 и 60,1 МПа соответственно, что на 14,2 % и 13,9 % меньше, чем у контрольной смеси в том же возрасте.

При добавлении РМ прочность на сжатие резко снижается до 42,6 МПа на 7-й день. Снижение прочности в раннем возрасте, вызванное добавлением растительного-подсолнечного масла связано с замедленной гидратацией изза образования нерастворимой плёнки на частицах шлака. Кроме того, ещё

одной причиной снижения прочности в раннем возрасте может быть реакция омыления между жирной кислотой в растительном масле и СаО. Жирная кислота может адсорбироваться на частицах Са(ОН)₂ и образовывать мицеллы, состоящие из ионов жирных кислот и кальциевых солей жирных кислот, которые могут препятствовать ранней реакции гидратации между частицами связующего вещества, тем самым снижая прочность в раннем возрасте.

По прочности на 28-й день образцы с добавлением ГРМ на 5% ниже значений контрольного образца. Считается, что сдерживание гидратации, вызванное ГРМ, может ослабевать с возрастом. Такая модификация структуры ШЩБ способствует к сужению пор и уменьшению пористости в бетоне, что позволяет повысить прочность и атмосферостойкость ШЩБ.

Выводы

- 1. Результаты показали, что растительное-подсолнечное масло после эмульгирования может значительно снизить автогенную усадку ШЩБ.
- 2. Введением масел в шлакощелочное вяжущее позволило замедлить сроки схватывания по сравнению с контрольным составом. Это связано с образованием нерастворимой плёнки на частицах шлака, которая может замедлять гидратацию.
- 3. Все четыре модифицирующие добавки на основе масел снижают прочность на сжатие ШЩБ в раннем возрасте. Однако, среди четырёх добавок, ГРМ обеспечивала более высокую прочность на сжатие. Снижение прочности в раннем возрасте связано с задержкой процессов гидратации. С возрастом замедление процессов гидратации шлакового камня снижается и возрасте 28 суток прочность на сжатие ШЩБ с ГРМ на 5 % меньше контрольного состава.
- 4. Все добавки могли уменьшить автогенную усадку ШЩБ. Среди них ГРМ показала наилучшие результаты по снижению усадки. Применение

ГММ и ГРМ в мелкозернистых ШЩБ позволило снизить аутогенную усадку на 7 сутки за счет реакции омыления ГММ ГРМ в щелочной среде и образования экранирующей пленки на поверхности частиц шлака препятствующей проникновению влаги, тем самым снижающей внутренние напряжение.

5. По сравнению с ММ и РМ, применение ГРМ в качестве добавки, ШЩБ, показало более снижающей усадку высокую прочность соответственно долговечность. ΓΡΜ позволяет целенаправленно регулировать сроками схватывания, что обеспечивает применение на строительной площадке.

Литература

- 1. Collins, F., Sanjayan, J. G. Cracking susceptibility of alkali-activated slag concrete under limited shrinkage. Cem. Concr. Res. 30 (5), 2000, pp. 791–798. DOI: 10.1016/s0008-8846(00)00243-x
- 2. Шляхова Е.А., Акопян А.Ф., Акопян В.Ф. Применение метода рентгенофазового анализа для изучения свойств модифицированного шлакощелочного вяжущего. Инженерный вестник Дона. 2012. №4. URL: ivdon.ru/ru/magazine/archive/n4p2y2012/1395.
- 3. Dai, S., Aydin, S., Yardimdzhi, M. Yu., De Schutter, G. Early structure formation, setting behavior, reaction kinetics, and microstructure of sodium silicate-activated slag mixtures with different retarders. Cem. Concr. 2022, pp. 159-170, 106872. DOI: 10.1016/j.cemconres.2022.106872
- 4. Романенко И.И. Модифицированные шлакощелочные бетоны с добавками побочных продуктов биосинтеза. Дис. ... канд. техн. наук. 05.23.05. Саратов. 1993. 145 с.
- 5. Fu, Q., Bu, M., Zhang, Q., Xu, W., Yuan, Q., Niu, D. Hydration characteristics and microstructure of slag-alkaline concrete: a review. Engineering 20,2023, pp 162–179. DOI: 10.1016/j.eng.2021.07.026

- 6. Geng Q., Tang S., Wang Y., A H., He Q., Wu Q., et al. Stress relaxation properties of calcium silicate hydrate: a molecular dynamics study. Journal of Zhejiang University SCIENCE A 25 (2), 2024, pp. 97–115. DOI: 10.1631/jzus.a2300476
- 7. Романенко И.И., Романенко М.И., Петровнина И.Н., Фадин А.И., Горохова А.А. Пробуждение гидравлической активности граншлаков химическими веществами. Инженерный вестник Дона. 2020. №11. URL: ivdon.ru/ru/magazine/archive/n11y2020/6677.
- 8. Ho, Y., Huang, Q., Xu, N., Lu, D., Han, S., Sun, H., et al. Comparison of stearic acid and oleic acid as shrinkage reducing additives in alkali-activated slag composites. J. Sustain. Cement-Based Mater. 13, 2024, pp. 436–449. DOI: 10.1080/21650373.2023.2280915
- 9. Ou, C., Feng, R., Li, F., Liu, G., and Li, N. Development of drying shrinkage model for alkali-activated slag concrete. Constr. Build. Mater. 323, 2022, 126556. DOI: 10.1016/j.conbuildmat.2022.126556
- 10. Sadeghian, G., Behfarnia, K., and Teimuri, M. (2022). Drying shrinkage of one-component alkali-activated cinder concrete. J. Build. Eng.2022, pp. 51-64, 104263. DOI: 10.1016/j.jobe.2022.104263.
- 11. Rahman, S.K., Al-Ameri, R. A new self-compacting geopolymer concrete for in situ use. Constr. Build. Mater. 2021, V. 267, p. 121822.

References

- 1. Collins, F., Sanjayan, J. G. Cem. Concr. Res. 30 (5), 2000, pp. 791–798. DOI: 10.1016/s0008-8846(00)00243-x
- 2. Shlyakhova E.A., Akopyan A.F., Akopyan V.F. Inzhenernyj vestnik Dona. 2012. №4. URL: ivdon.ru/ru/magazine/archive/n4p2y2012/1395.

- 3. Dai, S., Aydin, S., Yardimdzhi, M. Yu., De Schutter, G. Cem. Concr. 2022, pp. 159-170, 106872. DOI: 10.1016/j.cemconres.2022.106872
- 4. Romanenko I.I. Modifitsirovannyye shlakoshchelochnyye betony s dobavkami pobochnykh produktov biosinteza [Modified slag-alkali concretes with additions of by-products of biosynthesis]. Dis. ... kand. tekhn. nauk. 05.23.05. Saratov. 1993. 145 p.
- 5. Fu, Q., Bu, M., Zhang, Q., Xu, W., Yuan, Q., Niu, D. Engineering 20, 2023, pp 162–179. DOI: 10.1016/j.eng.2021.07.026
- 6. Geng Q., Tang S., Wang Y., A H., He Q., Wu Q., et al. Journal of Zhejiang University SCIENCE A 25 (2), 2024, pp. 97–115. DOI: 10.1631/jzus.a2300476
- 7. Romanenko I.I., Romanenko M.I., Petrovnina I.N., Fadin A.I., Gorokhova A.A. Inzhenernyj vestnik Dona. 2020. №11. URL: ivdon.ru/ru/magazine/archive/n11y2020/6677.
- 8. Ho, Y., Huang, Q., Xu, N., Lu, D., Han, S., Sun, H., et al. J. Sustain. Cement-Based Mater. 13, 2024, pp. 436–449. DOI: 10.1080/21650373.2023.2280915
- 9. Ou, C., Feng, R., Li, F., Liu, G., and Li, N. Constr. Build. Mater. 323, 2022, 126556. DOI: 10.1016/j.conbuildmat.2022.126556
- 10. Sadeghian, G., Behfarnia, K., and Teimuri, M. J. Build. Eng.2022, pp. 51-64, 104263. DOI: 10.1016/j.jobe.2022.104263.
 - 11. Rahman, S.K., Al-Ameri, R. Build. Mater. 2021, V. 267, p. 121822.

Дата поступления: 13.10.2025 Дата публикации: 26.11.2025