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Аннотация: Рассматривается способ применения математического анализа и машинного 
обучения для организации предиктивного обслуживания электродвигателя. Предложена 
комплексная методика диагностики технического состояния электродвигателя на основе 
анализа вибрационных сигналов, регистрируемых трехосевым акселерометром, которая 
может быть адаптирована для мониторинга состояния различных типов вращающегося 
оборудования в промышленных условиях.  
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Введение 

Применение нейросетевых моделей в промышленности для 

прогнозирования отказов электродвигателей является актуальной проблемой, 

учитывая тенденцию смещения современного производства в сторону 

автоматизации, что влечет за собой усложнение контроля и технического 

обслуживания электродвигателей [1]. 

Разработанный подход включает следующие этапы:  

− сбор вибрационных данных в различных режимах работы двигателя, 

включая нормальную эксплуатацию, и условия с имитацией основных видов 

неисправностей (механических, электрических и комбинированных);  

− предварительную обработку сигналов и выделение расширенного 

набора диагностических признаков;  

− построение классификационной модели на основе глубокой 

нейронной сети для автоматической идентификации типа неисправности. 

Практическая значимость работы заключается в создании системы 

предиктивного обслуживания, способной заблаговременно обнаруживать 
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развивающиеся дефекты электродвигателя и сократить время простоя 

оборудования, минимизируя затраты на ремонт. 

В качестве электродвигателя в работе использован двигатель АИМУ 

112 МВ6 У1[2, 3], представленный на рис. 1 и имеющий следующие 

технические характеристики: 

габариты (ШхВхГ)   - 350x550x450 мм; 

высота оси вращения   - 112 мм; 

частота вращения   - 1000 об/мин; 

напряжение    - 380 (660) В; 

ток статора    - 9,8 А; 

коэффициент мощности  - 0,7; 

взрывозащита   - 1Ex d IIB T4. 

 
Рис. 1. – Внешний вид электродвигателя 

 

Используемый для анализа набор данных содержит образцы, 

полученные с акселерометра [4], установленного на этом двигателе. Данные 

представляют собой непрерывные временные ряды, которые сами по себе не 

пригодны для непосредственного обучения моделей машинного обучения. 

Необходимо выделить дополнительные признаки и разделить полученные 

данные на сегменты. Деление на сегменты позволит преобразовать 
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непрерывные сигналы в дискретные примеры, которые можно использовать 

для классификации. 

Разделение данных на сегменты предоставляет следующие 

преимущества для обучения модели: 

− создание обучающих примеров – вместо одного длинного временного 

ряда модель будет обучаться на множестве независимых сегментов, каждый 

из которых представляет отдельное наблюдение; 

− выявление временных паттернов – в коротких сегментах легче 

обнаружить характерные паттерны движений (например, повороты), которые 

могут быть потеряны при анализе всего сигнала целиком; 

− увеличение объема данных – за счет перекрытия сегментов 

(overlap=0.4) искусственно увеличивается количество обучающих примеров, 

что особенно важно при ограниченном объеме исходных данных. 

Для каждой оси акселерометра (AccX, AccY, AccZ) были получены 

следующие статистические признаки: среднее арифметическое показаний 

вдоль оси, мера разброса данных вокруг среднего (стандартное отклонение), 

среднеквадратическое значение, наибольшее и наименьшее значения в 

сегменте данных. Дополнительно был вычислен показатель асимметрии и 

эксцесса. 

После обработки исходных данных акселерометра был получен 

расширенный набор из 65 диагностических признаков, который комплексно 

описывает вибрационные характеристики оборудования в различных 

режимах работы. Для каждой из трех осей акселерометра было извлечено по 

20 признаков, включающих статистические метрики (средние значения, 

стандартные отклонения, асимметрию, эксцесс, медиану, межквартильный 

размах), спектральные характеристики (спектральный центроид, энтропия, 

энергии в четырех частотных полосах), параметры пиковых частот и другие 

диагностически значимые параметры. Дополнительно были рассчитаны пять 
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общих признаков, включающих корреляции между осями и интегральные 

энергетические характеристики [5]. Это позволило преобразовать исходные 

временные ряды из 3,5 млн записей в сбалансированный набор данных из 

4096 сегментов, где каждый сегмент описывается 65 разнообразными 

признаками. Это не только решило проблему сильного дисбаланса классов в 

исходных данных, но и обеспечило модель машинного обучения 

комплексным набором характеристик для эффективного различения 16 типов 

состояний оборудования. 

Архитектура нейронной сети и методика обучения 

Для решения задачи классификации состояний электродвигателя была 

разработана двухветвевая ансамблевая нейронная сеть [6] (рис. 2), 

сочетающая преимущества сверточных моделей для анализа временных 

рядов и полносвязных сетей для обработки табличных признаков. Для 

повышения устойчивости и надёжности классификации применяется 

ансамбль из трёх независимых моделей, обучаемых по схеме трёхмодельной 

перекрёстной проверки (Stratified K-Fold, k = 3). 

Каждая модель обучается на сочетании обучающей и валидационной 

выборок [7], что уменьшает влияние случайных выбросов, повышает 

обобщающую способность и снижает риск переобучения. Финальное 

предсказание формируется путём усреднения вероятностей всех трёх 

моделей ансамбля.  
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Рис. 2. – Слои нейронной сети 

 

Для дополнительного повышения точности применяется аугментация 

[8, 9] на этапе предсказания. Для каждого тестового сегмента формируется 

шесть его аугментированных версий с помощью следующих преобразований: 

добавление гауссовского шума (σ = 0.008); случайное масштабирование 

амплитуды (σ = 0.06); циклический временной сдвиг до 8% длины сегмента. 

Предсказания по всем аугментированным версиям усредняются, что 

повышает устойчивость модели к вариациям входного сигнала и снижает 
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влияние случайных флуктуаций. Обучение каждой модели ансамбля 

выполняется в течение 50 эпох с использованием следующих компонентов: 

− оптимизатор: Adam (learning rate = 0.001);  

− функция потерь: Sparse Focal Loss (γ = 2.0), уменьшающая 

влияние дисбаланса классов; 

− Callbacks: 

− EarlyStopping (patience = 20, мониторинг val_accuracy, 

восстановление лучших весов), 

− ReduceLROnPlateau (автоматическое снижение скорости 

обучения при стагнации качества), 

− ModelCheckpoint (сохранение лучшей модели для каждого 

фолда); 

− аугментация: добавление шума, масштабирование и циклический 

сдвиг, применяемые с вероятностями, заданными в коде. 

Модели состоят из двух параллельных ветвей, которые объединяются 

перед классификатором. 

1. Ветка обработки сырых данных. Принимает на вход временной 

ряд акселерометра формы (segment_size, 3).  

Структура ветви: 

Conv1D(64, kernel_size=16, strides=2) → BatchNormalization; 

Conv1D(128, kernel_size=8, strides=2) → BatchNormalization; 

Conv1D(256, kernel_size=3, strides=1); 

GlobalAveragePooling1D; 

Dropout; 

Dense(128, activation='relu'); 

Dropout. 

2. Ветка обработки признаков). Принимает табличный вектор длины 

n_features: 
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Dense(128, activation='relu') → BatchNormalization → Dropout; 

Dense(64, activation='relu'). 

Векторы обеих ветвей объединяются операцией concatenate, после чего 

проходят через: 

Dense(128, activation='relu') → BatchNormalization → Dropout; 

Dense(64, activation='relu'); 

выходной слой Dense(num_classes, activation='softmax'). 

Модель компилируется с оптимизатором Adam и функцией потерь 

Sparse Focal Loss. В качестве метрики используется точность (accuracy). 

Предложенная архитектура объединяет способность сверточных слоёв 

выделять высокоуровневые временные паттерны с эффективностью 

полносвязных слоёв при работе со статическими признаками. Такое 

гибридное сочетание, усиленное ансамблевым обучением и аугментацией во 

время теста, обеспечивает высокую точность и устойчивость классификации 

различных состояний электродвигателя [10]. По завершении обучения 

модели были получены реальные значения метрик, приведенные в табл. 1. 

Общие метрики для модели: 

− метрика точность = 0,96 – доля правильных предсказаний модели 

относительно общего числа всех предсказаний; 

− макроусреднение = 0.96 – вычисление точности, полноты и оценка 

F1 отдельно для каждого класса и усреднение полученных значений; 

− средневзвешенное значение = 0.96 – аналог макроусреднения, но с 

учетом частоты встречаемости каждого класса. 

Исходя из анализа данных, приведенных в табл. 1, можно сделать 

вывод о том, что предложенная ансамблевая архитектура демонстрирует 

высокую эффективность в классификации всех типов неисправностей. 

Наилучшие результаты достигнуты для механических неисправностей (F1-
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мера близка к 1.0), что объясняется значительными вибрационными 

характеристиками данных дефектов. 

Таблица 1  

Метрики качества классификации 

Метрики precision recall f1-score support 

Electrical fault 1.00 0.97 0.99 299 

Electrical fault with load 0.91 0.90 0.90 299 

Electrical fault with load and noise 0.90 0.91 0.91 299 

Electrical fault with noise 0.97 1.00 0.99 299 

Mechanical and Electrical fault 0.99 0.99 0.99 299 

Mechanical and Electrical fault with  

load and noise 

1.00 1.00 1.00 299 

Mechanical and Electrical fault with noise 1.00 0.99 0.99 299 

Mechanical fault (shaft misalignment) 1.00 1.00 1.00 299 

Mechanical fault (shaft misalignment)  

with load 

1.00 1.00 1.00 251 

Mechanical fault with high noise 1.00 1.00 1.00 257 

Mechanical fault with load and noise 1.00 1.00 1.00 251 

Mechanical fault with noise 1.00 1.00 1.00 255 

Normal operation 0.96 0.88 0.91 178 

Normal operation with load 0.98 0.96 0.97 170 

Normal operation with load and noise 0.96 0.98 0.97 173 

Normal operation with noise 0.88 0.96 0.92 169 

Особенно важно отметить высокую точность классификации для 

условий с нагрузкой и шумом, что подтверждает применимость модели к 

реальным промышленным условиям эксплуатации. Использование 

ансамблевого подхода с аугментацией во время теста позволило существенно 

повысить надежность предсказаний по сравнению с одиночными моделями. 
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Заключение 

Обучение ансамблевой нейросетевой модели, проведенное в работе, 

демонстрирует высокую эффективность в решении задачи классификации 16 

состояний электродвигателя. Разработанная двухветвенная архитектура, 

сочетающая анализ сырых вибрационных сигналов и извлеченных из них 

признаков, в сочетании с методологией перекрестной проверки и 

аугментацией во время теста, показала точность 96% на тестовых данных. 

Полученные результаты свидетельствуют о перспективности 

предложенного подхода для внедрения в системы предиктивного 

обслуживания промышленного оборудования. Дальнейшие исследования 

могут быть направлены на адаптацию модели для работы с другими типами 

оборудования с вращающимися частями и оптимизацию вычислительной 

эффективности для работы в реальном времени. 
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