

Численный расчет балок прямоугольного поперечного сечения на устойчивость плоской формы изгиба

А.С. Чепурненко, В.В. Ульянская, Д.А. Высоковский, И.М. Зотов

Донской государственный технический университет

Аннотация: Рассматривается задача устойчивости плоской формы изгиба деревянной балки постоянного прямоугольного сечения, нагруженной сосредоточенной силой в середине пролета. Приводится дифференциальное уравнение для случаев приложения силы не в центре тяжести сечения. Решение уравнения производится численно методом конечных разностей. Для случая приложения нагрузки в центре тяжести задача сводится к обобщенному вековому уравнению. В других случаях используется разработанный авторами итерационный алгоритм, реализованный в пакете Matlab. Получена зависимость между величиной критической силы и положением точки приложения нагрузки. Для указанной зависимости подобрана линейная аппроксимирующая функция. Выполнено сравнение результатов, полученных авторами, с аналитическим решением при помощи функций Бесселя.

Ключевые слова: устойчивость плоской формы изгиба, вековое уравнение, метод конечных разностей, итерационный процесс.

Оптимальными с точки зрения расхода материала являются балки с максимальным отношением высоты к ширине, откуда вытекает необходимость расчёта на устойчивость плоской формы изгиба [1-4].

Критические нагрузки в задачах устойчивости плоской формы изгиба балок прямоугольного сечения определяются из дифференциального уравнения вида [5,6]:

$$GI_{\kappa}\frac{d^{2}\theta}{dx^{2}} + \frac{M_{\nu}^{2}}{EI_{z}}\theta = 0, \qquad (1)$$

где G – модуль сдвига, I_{κ} – момент инерции при кручении, I_{z} – осевой момент инерции M_{y} – изгибающий момент, θ – угол закручивания.

Уравнение (1) записано для случая приложения нагрузки в центре тяжести поперечного сечения. В настоящей статье будет рассмотрена деревянная шарнирно-опертая по концам балка, с сосредоточенной силой *F*, приложенной в середине пролета (рисунок 1).

Рис. 1. – Расчетная схема

В диссертации А.А. Карамышевой [7] приводится дифференциальное уравнение, в котором учитывается положение точки приложения нагрузки и переменная жесткость балки:

$$GI_{\kappa}\frac{d^{2}\theta}{dx^{2}} + \frac{d\left(GI_{\kappa}\right)}{dx}\frac{d\theta}{dx} + \left(qa + \frac{M_{y}^{2}}{EI_{z}}\right)\theta = 0, \qquad (2)$$

где а – расстояние от центра тяжести до места приложения нагрузки.

Так как рассматриваемая в данной статье балка имеет постоянное поперечное сечение по всей длине, то второе слагаемое в уравнении (2) обращается в нуль.

Изгибающий момент будет определяться по двум формулам, в зависимости от величины *x*:

$$M_{y} = \frac{Fl}{2}x, \text{ при } 0 \le x \le \frac{l}{2},$$

$$M_{y} = \frac{Fl}{2} \left(1 - \frac{x}{l}\right), \text{ при } \frac{l}{2} \le x \le l$$
(3)

Введем безразмерную координату $\xi = \frac{x}{l}$ и безразмерные величины

$$\lambda = \frac{F^2 l^4}{GI_{\kappa} EI_z}, \quad \alpha = \frac{a}{l} \sqrt{\frac{EI_z}{GI_{\kappa}}},$$

Тогда выражения (3) примут вид:

$$M_{y} = \frac{Fl}{2}\xi$$
, при $0 \le \xi \le 0,5$,
 $M_{y} = \frac{Fl}{2}(1-\xi)$, при $0,5 \le \xi \le 1$,

Переход от сосредоточенной силы к равномерно распределенной нагрузке выполняется по формуле:

$$q = \frac{F}{\Delta x} = \frac{F}{l\Delta \xi}.$$

Уравнение (2) для узла, в котором приложена сосредоточенная сила представляется в виде:

$$\frac{d^{2}\theta}{d\xi^{2}} + \left(\sqrt{\lambda}\frac{\alpha}{\Delta\xi} + \lambda f(\xi)\right)\theta = 0,$$

$$f(\xi) = \begin{cases} \frac{\xi^{2}}{4}, \text{ при } 0 \le \xi \le 0, 5 \\ \frac{\left(1-\xi\right)^{2}}{4}, \text{ при } 0, 5 \le \xi \le 1. \end{cases}$$

$$(4)$$

где

Для остальных точек балки разрешающее уравнение принимает вид:

$$\frac{d^2\theta}{d\xi^2} + \lambda f(\xi)\theta = 0.$$
(5)

Угол закручивания в начальной и конечной точках равен нулю, т.е. граничные условия имеют вид: $\theta(0) = 0, \ \theta(1) = 0.$

Решение выполняется численно при помощи метода конечных разностей [8]. Отрезок $\xi \in [0;1]$ разбивается на *n* шагов $\Delta \xi$. Разностная аппроксимация дифференциального уравнения (4) записывается следующим образом [9]:

$$\frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{\Delta \xi^2} + \sqrt{\lambda} \frac{\alpha}{\Delta \xi} + \lambda f(\xi_i) \theta_i = 0$$
(6)

Составив уравнение (6) для центрального узла сетки, а также аппроксимировав уравнение (5) для остальных внутренних узлов сетки, получим однородную систему линейных алгебраических уравнений:

$$\left(\left[A \right] + \sqrt{\lambda} \frac{\alpha}{\Delta \xi} \left[C \right] + \lambda \left[B \right] \right) \left\{ X \right\} = 0, \tag{7}$$

Уравнение (6) имеет ненулевое решение при определителе, равному нулю. Таким образом,

$$\left[\left[A \right] + \sqrt{\lambda} \frac{\alpha}{\Delta \xi} \left[C \right] + \lambda \left[B \right] \right] = 0$$
(8)

В случае приложения нагрузки в центре тяжести коэффициент *α* равен нулю, и уравнение (7) принимает вид обобщенного векового уравнения. Первая критическая нагрузка соответствует минимальному из собственных значений *λ*. Критическая нагрузка вычисляется по следующей формуле:

$$F_{\kappa p} = \frac{\sqrt{\lambda}\sqrt{GI_{\kappa}EI_{z}}}{l^{2}} = K\frac{\sqrt{GI_{\kappa}EI_{z}}}{l^{2}}$$

При $\alpha = 0$ коэффициент *K* равен 16.94, и ему соответствует собственное значение $\lambda = 286.96$. При $\alpha \neq 0$ уравнение (8) не будет являться обобщенным вековым уравнением, поэтому для расчета был разработан итерационный процесс.

В первом приближении вместо уравнения (8) решается вековое уравнение, имеющее вид:

$$\left[\left[A_{1}\right]+\lambda\left[B\right]\right]=0,$$
(9)

где $[A_1] = \left[A\right] + \sqrt{\lambda_1} \frac{\alpha}{\Delta \xi} [C]$, $\lambda_1 = 286.96$.

В результате получим минимальное собственное значение λ'_1 . Во втором приближении в матрицу $[A_1]$ вместо λ_1 подставляем $\lambda_2 = \frac{\lambda_1 + \lambda'_1}{2}$. Итерационный процесс будет остановлен при условии:

$$\frac{\left|\lambda_{i}-\lambda_{i}'\right|}{\lambda_{i}}\cdot100\%<\varepsilon,$$
(10)

где ε – погрешность, выражаемая в процентах.

Представленный итерационный процесс был реализован в пакете Matlab. В итоге был получен график зависимости коэффициента К от положения точки приложения силы (α) (рисунок 2). Данный график показывает, что в случае приложения силы над центром тяжести ее критическая величина снижается, а если нагрузка приложена под центром тяжести, то ее критическая величина возрастает.

Рис. 2. – График зависимости К(α)

В нормах проектирования деревянных конструкций (СП 64.13330.2017. Деревянные конструкции) положение точки приложения силы не учитывается. Нами предлагается ввести поправочный коэффициент $K_n = \frac{K}{K_0}$, где величина $K_0 = 16,94$ соответствует приложению нагрузки в центре тяжести. В программе Microsoft Excel для зависимости $K_n(\alpha)$ была подобрана линейная аппроксимирующая функция, имеющая вид:

$$K_n = 1 - 1.831\alpha.$$
 (11)

Соответствующая формуле (11) кривая $K(\alpha)$ представлена на рис. 2 штриховой линией.

Произведено сравнение результатов, полученных нами при помощи итерационного алгоритма, с аналитическим решением А.С. Вольмира [10] на основе функций Бесселя (табл. 1).

Таблица №1

Над центром тяжести										
α		0	0,03	0,143	0,143		0,293		0,544	
К (Авторы)	16	,94	15,9857	12,776	12,7765		9,6056		6,3512	
К(Вольмир)	16	,94	16,0	12,8	12,8		9,6		6,4	
Под центром тяжести										
α	0	-0,069	-0,166	-0,271	-0,),396 -0,56		2	-0,815	
К (авторы)	16,94	19,215	1 22,3576	25,5395	28,7354		31,9455		35,1239	
К(Вольмир)	16,94	19,2	22,4	25,6	2	8,8 32,0			35,2	

Совпадение результатов свидетельствует об их достоверности.

Литература

- 1. Карамышева А.А., Языев Б.М., Чепурненко А.С., Языева С.Б. Оптимизация геометрических параметров двухскатной балки прямоугольного сечения // Инженерный вестник Дона. 2015. №3. URL: ivdon.ru/uploads/article/pdf/IVD_55_karamysheva.pdf_9eaad3038e.pdf
- Карамышева А.А., Языев Б.М., Чепурненко А.С., Языева С.Б. Оптимизация формы ступенчато-призматической балки при изгибе // Инженерный вестник Дона. 2015. №3. URL: ivdon.ru/uploads/article/pdf/IVD_54_karamysheva.pdf_dff7f7bf1a.pdf
- 3. Timoshenko S.P., Gere J.M. Theory of elastic stability, McGraw-Hill, New York, 1961, second edition, 541 p.
- 4. Karamysheva A.A., Yazyev S.B., Avakov A.A. Calculation of plane bending stability of beams with stiffness. ICIE, 2016, pp. 1872-1877.
- Вольмир А. С. Устойчивость деформируемых систем. М.: Наука, 1967, 984
 с.
- Тимошенко С.П. Устойчивость упругих систем. Л., М.: Гостехиздат, 1946, 535 с.
- Карамышева, А. А. Совершенствование расчета на устойчивость плоской формы изгиба деревянных балок переменного сечения и их оптимизация: дис. ... канд. техн. Ростов-на-Дону, 2016, 124 с.
- Варвак П.М., Варвак Л.П. Метод сеток в задачах расчета строительных конструкций. М.: Стройиздат, 1977, 154 с.
- 9. Sorin Micu, Ionel Rovenţa, Laurenţiu Emanuel Temereancă. Approximation of the controls for the linear beam equation. Springer-Verlag London, 2016. URL: researchgate.net/publication/294736245_Approximation_of_the_controls_for_t he linear beam equation
- 10.Вольмир А.С. Устойчивость упругих систем. М.: Государственное издательство физико-математической литературы, 1963, 879 с.

References

1.Karamysheva A.A., Yazyev B.M., Chepurnenko A.S., Yazyeva S.B.InženernyjvestnikDona(Rus).2015.№3.URL:ivdon.ru/uploads/article/pdf/IVD_55_karamysheva.pdf_9eaad3038e.pdf

2. Karamysheva A.A., Yazyev B.M., Chepurnenko A.S., Yazyeva S.B. Inženernyj vestnik Dona (Rus). 2015. №3. URL: ivdon.ru/uploads/article/pdf/IVD_54_karamysheva.pdf_dff7f7bf1a.pdf

3. Timoshenko S.P., Gere J.M. Theory of elastic stability, McGraw-Hill, New York, 1961, second edition, 541 p.

4. Karamysheva A.A., Yazyev S.B., Avakov A.A. Calculation of plane bending stability of beams with stiffness. ICIE, 2016, pp. 1872-1877.

5. Vol'mir A. S. Ustoychivost' deformiruemykh system [Stability of deformable systems]. Moskow: Nauka, 1967, 984 p.

6. Timoshenko S.P. Ustoychivost' uprugikh system [Stability of elastic systems]. L., Moskow: Gostekhizdat, 1946, 535 p.

7. Karamysheva, A. A. Sovershenstvovanie rascheta na ustoychivosť ploskoy formy izgiba derevyannykh balok peremennogo secheniya i ikh optimizatsiya: dis. ... kand. tekhn. [Improvement of the stability of the flat form of the bending of the beam of variable cross-section beams calculation and their optimization]. Rostov-na-Donu, 2016, 124 p.

8. Varvak P.M., Varvak L.P. Metod setok v zadachakh rascheta stroitel'nykh konstruktsiy [The method of grids in the problems of calculating building structures]. Moskow: Stroyizdat, 1977, 154 p.

9. Sorin Micu, Ionel Rovenţa, Laurenţiu Emanuel Temereancă. Approximation of the controls for the linear beam equation. Springer-Verlag London, 2016. URL: researchgate.net/publication/294736245_Approximation_of_the_controls_for_the_linear_beam_equation

10. Vol'mir A.S. Ustoychivost' uprugikh system [Stability of elastic systems].Moskow: Gosudarstvennoe izdatel'stvo fiziko-matematicheskoy literatury, 1963, 879 p.