Особенности получения покрытия диоксида марганца методом термолиза на танталовом аноде конденсатора

А.Г. Старостин, И.С. Потапов

Диоксид марганца находит широкое применение в качестве катодного материала при производстве оксидно-полупроводниковых конденсаторов, селективных датчиков, катализаторов и химических источников тока [1-7]. При формировании покрытия MnO₂ на конденсаторах установлено сопутствующее этому процессу образование кристаллов неизвестного состава, разрушающих оксидный слой MnO₂ [1]. Анализ образцов конденсаторов, полученных по промышленным технологиям [5-6], показал, что катодное покрытие MnO₂ имеет дефектные структуры (трещины, кристаллические образования, неоднородность морфологии). Такие дефекты способны привести к увеличению токов утечки и пробою диэлектрика конденсатора, а так же к снижению емкости и срока службы конденсаторов и химических источников тока. Состав образуемых кристаллов, причины их возникновения на поверхности диоксида марганца ранее не были исследованы. В связи с этим, целью исследования являлось выявление причин образования кристаллов на поверхности и их состава на покрытии MnO_2 на пористых танталовых анодах конденсаторов.

Экспериментальная часть

Аноды с нанесенным покрытием диоксида марганца, полученного из высокочистого нитрата марганца при 300°С анализировали при помощи оптического микроскопа «Carl Zeiss Axio Imager M2.m» в отраженном свете (светофильтр «тёмное поле») и на электронном микроскопе «HITACHI S-3400N» с приставкой «Bruker X-Flash 4010» для рентгено-спектрального анализа.

Для определения механизма разложения кристаллогидрата нитрата марганца и установления причины образования кристаллических дефектов термический был проведен синхронный анализ, включающий (ДСК) дифференциальную сканирующую колориметрию И термогравиметрию (ТГ) кристаллогидратов 4- и 6-водного нитрата марганца (II) высокой чистоты на приборе синхронного термического анализа «Netzsch STA449c Jupiter», совмещенного с прибором «Bruker Tenzor27» для анализа отходящих газов по методу ИК-Фурье. Фазовый состав образцов определяли на рентгенофазовом дифрактометре «Shimadzu XRD-7000».

Результаты экспериментов и их обсуждение

На рисунках 1-2 представлены снимки покрытия диоксида марганца на пористом танталовом аноде промышленного образца конденсатора марки К53-68 (см. рис.1) и на поверхности покрытия MnO₂, полученного после однократного цикла стадии пропитки заготовки анода нитратом марганца высокой чистоты с концентрацией 27% и последующего нагрева до температуры 300°C в атмосфере воздуха (рис.2). Видно, что на покрытии существуют кристаллические образования, нарушающие целостность покрытия.

 Рис. 1. Отложения кристаллов на
 Рис. 2. Скопление кристаллов на

 поверхности покрытия MnO₂, катодном покрытии MnO₂, увеличение
 увеличение 500х

С помощью элементного анализа установлено, что в исследуемом образце (анализ проведен в зоне нахождения белых кристаллов - см. рис. 2)

содержатся оксид марганца и оксид тантала, относящийся к составу подложки (см. табл.1).

Таблица №1

Элементный анализ кристаллов на поверхности покрытия MnO₂ на танталовом аноде.

Элемент	Атомный номер	Массовые	Количество	Доля
		проценты,	атомов,	ошибки,
		% масс.	% ат.	%
Mn	25	32,8	19,79	0,8
Та	73	31,25	5,73	0,8
0	8	35,94	74,48	3,7

Причинами образования и роста скоплений кристаллов на покрытии MnO₂, получаемых в процессе нагревания нитрата марганца могут являться:

1. Неполное разложение нитрата марганца;

2. Сорбция кислорода и паров воды из воздуха на промежуточных стадиях производства с образованием нового соединения;

3. Перестройка кристаллической структуры MnO₂.

Проведение синхронного термического анализа позволило определить температурные интервалы протекания промежуточных процессов в кристаллогидратах нитрата марганца. Термограммы нагрева четырех- и шестиводного нитрата марганца до 600°С в токе воздуха приведены на рисунке 3.

Рис.3. Термограмма ТГ/ДСК нагрева: А - Мп(NO₃)₂·4H₂O и Б - Мп(NO₃)₂·6H₂O в атмосфере воздуха, скорость нагрева 10 град/мин

Из результатов съемки термограммы установлено, что процессы, сопутствующие нагреванию кристаллогидратов 4-х и 6-ти водного нитрата марганца, имеют схожий характер. Для Mn(NO₃)₂·4H₂O характерен пик плавления при температуре 32°C, так как при комнатной температуре данный кристаллогидрат находится в твердом состоянии, в отличии от шестиводного нитрата марганца. Отличия между кристаллогидратами заключаются в протекания дегидратации параллельными реакциями температурах с (OBP). гидролиза окислительно-восстановительной реакции И Незначительное отличие температурных интервалов для пиков ДСК (энтальпии протекающего процесса) на термограммах можно объяснить тем, что 4-водный нитрат марганца получают путем упаривания 6-водного, а значит, он частично проходит стадию гидролиза. Результаты анализа температурных интервалов протекающих процессов при нагревании $Mn(NO_3)_2 \cdot 4H_2O$ и $Mn(NO_3)_2 \cdot 6H_2O$ на термограммах представлены в табл. 2.

Таблица №2

№	T _{0,} °C	T _{max,} °C	$T_{\kappa,}$ °C	Δm, %	Процесс
1	32,0 / 18,5	52,8 / -	77,0 / 25,3	0 / 0	Плавление
2	2 77,0 / 25,3	161,7 / 164,0	178,0 / 181,0	17,22 / 19,57	Дегидратация +
2					гидролиз
2 179.0	178 0 / 181 0	2086/1818	2110/1920	32,31 / 3,70	Дегидратация +
3	1/8,0/181,0 208,0	200,07 104,0	211,07 100,0		гидролиз
4 211,0 / 18	2110/1880	214,1 / 189,0	223,4 / 190,1	10,97 / 2,70	Дегидратация +
	211,07 188,0				OBP
5 222 4 / 100	222 1 / 100 1	2247/2106	260 0 / 226 0	1 85 / 25 20	Дегидратация +
5	223,47190,1	224,77219,0	200,07220,0	4,837 33,20	OBP
6	260 0 / 226 0	/ 221 2	494,0 / 263,0	1,28 / 6,73	Дегидратация +
0	200,07220,0	-/231,3			OBP
7	494,0 / 263,0	567,0 / -	606,0 / 513,0	2,43 / 1,61	Разложение
					MnO_2
8	- / 513,0	- / 567,2	- / 599,8	- / 2,14	Разложение
					MnO_2

Показатели термического анализа $Mn(NO_3)_2 \cdot 4H_2O / Mn(NO_3)_2 \cdot 6H_2O$

Где Т₀ – начальная температура протекания процесса;

T_{max} – значение температуры в точке экстремума кривой ДСК;

Т_к – конечное значение температуры протекания процесса;

∆т – изменение массы образца.

Результаты анализа термограмм показывают ступенчатый механизм удаления воды и диоксида азота. Однако, ранее образование MnO₂ рассматривали с точки зрения диссоциации кристаллогидратов Mn(NO₃)₂·xH₂O, без учета протекающей реакции гидролиза [6]:

1)
$$Mn(NO_3)_2 nH_2O \rightarrow Mn(NO_3)_2 + nH_2O (\sim 100-180^{\circ}C)$$
 (1)

2)
$$Mn(NO_3)_2 \rightarrow MnONO_3 + NO_2 (180-230^{\circ}C)$$
 (2)

3)
$$MnONO_3 \rightarrow MnO_2 + NO_2 (230-250^{\circ}C)$$
 (3)

4) Общее уравнение разложения:

 $Mn(NO_3)_2 nH_2O \rightarrow MnO_2 + 2NO_2 + nH_2O$ (4)

Благодаря проведению параллельного анализа состава отходящих газов при нагревании Mn(NO₃)₂·6H₂O по методу ИК-Фурье спектрометрии, удалось подтвердить совместное удаление воды и NO₂. Доказано присутствие паров воды в продукте даже при высоких температурах (более 200°C). На основании диаграмм синхронного термического анализа и ИК-Фурье спектрограммы установлено, что вода в кристаллогидрате нитрата марганца неравноценна и удаление кристаллизационной воды нитрата марганца при температурах до 181°C не обеспечивает удаление химически связанной воды.

Рис. 4. ИК-Фурье спектрограмма отходящих газов при термолизе Mn(NO₃)₂x6H₂O со скоростью нагрева 5°C/мин: A) при T=129, 153, 190°C; Б) при T=30-650°C

Анализ ИК-Фурье спектрограммы отходящих газов показал, что процесс дегидратации начинается при температуре 30°С, которому

соответствуют линии поглощения воды на диаграмме (3400-3800см⁻¹). А начиная с температуры 129°С дегидратация протекает совместно с выделением NO₂ (спектры поглощения 1459,3-1811,86см⁻¹, 1629см⁻¹, 1595см⁻¹, 2886,25-2921,59 см⁻¹). Также при 129°С появляются спектры с длинной волны (794см⁻¹, 716см⁻¹, 674см⁻¹, 645см⁻¹) соответствующие парам HNO₃. Экстремум газовыделения наблюдается при температуре 153°С. Выделение H₂O и NO₂ заканчивается при температуре 215°С со скоростью нагрева 5°С/мин и 260-263°С при скорости нагрева 10°С/мин. Наличие воды при повышенных температурах показывает ее участие и большое влияние на протекающие химические реакции.

На основании полученных данных предложен механизм термолиза нитрата марганца, используемого в технологии получения покрытий MnO₂ из нитрата марганца на пористых носителях и установлена вероятная причина формирования кристаллических дефектов на поверхности получаемого покрытия MnO₂ после термолиза. Процесс термолиза Mn(NO₃)₂ заключается в поэтапном протекании реакций: вначале гидролиза нитрата марганца, а Mn^{2+} ступенчатого иона по затем окисления окислительно-(OBP) c параллельной восстановительным реакциям дегидратацией прекурсора. Химизм процесса термолиза:

1) Гидролиз растворов Mn(NO₃)₂ на стадии пропитки носителя с подогревом: Mn(NO₃)₂ + HOH ↔ Mn(OH)NO₃ + HNO₃ $\Delta G^{60^{\circ}C} = -16,895 \kappa Дж$ (5)

2) Окислительно-восстановительная реакция в печи при нагревании:

$$Mn(OH)NO_3 \rightarrow MnOOH + NO_2\uparrow \qquad \Delta G^{300^{\circ}C} = -58,177 \kappa Дж$$
(6)

3) Последующая ОВР при нагревании в печи:

4MnOOH +
$$O_2 \xrightarrow{300^{\circ}C} \rightarrow 4MnO_2 + 2H_2O\uparrow$$
 $\Delta G^{300^{\circ}C} = -90,189 \kappa Дж$ (7)

Побочные процессы в технологии получения диоксида возможны при не полном разложении оксогидроксида марганца или недостатке кислорода: $4MnOOH + O_2 + (4n-2)H_2O \rightarrow 4(MnO_2 \cdot nH_2O)$ (8) $2MnOOH \rightarrow Mn_2O_3 + H_2O$ $\Delta G^{300^{\circ}C} = -1,27\kappa Дж$ (9) Гидролиз гидроксонитрата марганца по 2 ступени термодинамически невозможен при данных условиях:

Mn(OH)NO₃ +HOH \leftrightarrow Mn(OH)₂ + HNO₃ $\Delta G^{300^{\circ}C} = +30,672 \kappa Дж$ (10)

На стадии дегидратации при нагревании кристаллогидрата $Mn(NO_3)_2$ (4 или 6-водного), на фоне протекающего ускоренного процесса гидролиза нитрата марганца происходит сопутствующее образование гидроксонитрата, переходящего далее в оксогидроксид марганца по окислительновосстановительной реакции. Таким образом, ионы Mn^{2+} в ходе OBP поэтапно окисляются сначала в Mn^{3+} , а затем в Mn^{4+} .

Образование гидроксонитрата марганца подтвердили рентгенофазовым анализом покрытия, полученного в виде сросшихся микротрубок. Они возникли после пропитки пористого носителя нитратом марганца различных концентраций (10, 27, 42, 57, 62%) при длительном хранении в темноте (3-5недель) при комнатной температуре.

Рис. 5. Внешний вид микротрубок Mn(OH)NO₃ на поверхности анода конденсатора, А – увеличение 500Х, Б – увеличение 1000Х.

Диаметр микротрубок составляет 1-10мкм. Они прорастают из основания пористого танталового носителя и покрывают поверхность под небольшим углом. В составе трубок содержится моногидрат гидроксонитрата марганца и диоксид марганца в структурном типе рамсделлит, близкого по структуре к γ-MnO₂ (наиболее электропроводящей и наиболее каталитически активной структуры MnO₂).

На основании термодинамического анализа окислительновосстановительной реакции окисления MnOOH (см. реакцию 7) установлено,

МпООН сохраняет свое что присутствие даже повышенных при температурах (по научным данным [9-10] составляет 120-325°С). Так при 250°С в прекурсоре остается 15% масс. оксогидроксида марганца, а при 300°С – 10% масс. При этом известно [10], что оксогидроксид марганца способен к протеканию медленной реакции перекристаллизации с формированием гидратированной структуры диоксида марганца MnO₂·nH₂O при хранении в комнатных условиях по реакции 8. А значит причиной образования кристаллических дефектов на поверхности покрытия MnO₂ после термолиза, является остаточное количество MnOOH. Такие дефекты, нарушают целостность катодного (MnO₂) и диэлектрического (Ta₂O₅) покрытий на пористых танталовых анодах конденсаторов и снижают качество продукции.

Выводы

Протекание процесса термолиза нитрата марганца сопровождается образованием промежуточных соединений: гидроксонитрата марганца, оксогидроксида марганца и его дальнейшего окисления с образованием диоксида марганца. Следы полупродукта MnOOH способны к поглощению кислорода и паров воды из атмосферного воздуха с протеканием вторичных процессов на катодном покрытии после извлечения из печи. Указанный момент отрицательно сказывается на химическом составе и целостности покрытия MnO₂ на поверхности пористого танталового анода конденсатора, что негативно влияет на его качество. Образование кристаллических дефектов из остатков оксогидроксида марганца может приводить к ухудшению электрических характеристик танталового конденсатора из-за неоднородности катодного покрытия MnO₂.

Таким образом, результаты исследование процесса термолиза нитрата марганца позволяют определить условия создания покрытий MnO₂ необходимого качества без кристаллических дефектов на его поверхности и способствуют совершенствованию технологии получения диоксида марганца методом термолиза в различных сферах его применения.

Литература:

1. Ренне В.Т. Электрические конденсаторы. Л.: Энергия, 1969, 502с.

2. Ныркова Л.И. Синтез и физико-химические свойства диоксида марганца [Текст]. Автореферат дис-ии на получение степени канд. хим. н. Киев: Изд-во Инст-та общ. и неорг. химии им. В.И. Вернадского, 1996. – 18с.

3. Старостин А.Г., Лановецкий, С.В. Пойлов В.З. Влияние характеристик поверхностных явлений нитрата марганца на пропитку танталового анода конденсатора [Электронный ресурс] // «Инженерный вестник Дона», 2013, №2. – Режим доступа: http://www.ivdon.ru/magazine/archive/n2y2013/1728 (доступ свободный) – Загл. с экрана. – Яз. рус.

4. Фиговский О. Нанотехнологии: сегодня и завтра. (Зарубежный опыт, обзор) [Электронный ресурс] // «Инженерный вестник Дона», 2011, №3. – Режим доступа: http://ivdon.ru/magazine/archive/n3y2011/511 (доступ свободный) – Загл. с экрана. – Яз. рус.

5. Jae Kun Kim, Jee Young Yoo. A Study on the Characteristics of Tantalum Condenser over the Pyrolysis Temperature of Manganese nitrate by using a Dry-Radiational Furnace. Hwahak konghak Vol. 41, No. 3, June, 2003, pp. 337-342.

 Jaekun Kim, Hyungjin Yu, Woonghee Hong. A Study on the Characteristics of Solid Capacitor According to the Pyrolysis Methods. Korean Chem. Eng. Res., Vol. 44, No. 6, December, 2006, pp. 614-622.

 Вержбицкий Ф.Р. Высокочастотно-термический анализ. – Иркутск: Изд-во Иркутского ун-та, 1986. – 240с.

8. Maria Folvari. Handbook of thermogravimetric system of minerals and its use in geological practice. Budapest: Occasional Papers of the Geological Institute of Hungary. Vol. 213. 2011, pp. 28-46.

 9. Ященко А.И. Термический метод определения состава оксида марганца. // Сборник статей магистрантов. Выпуск №8 / Тамбов. Издательство ТГТУ. 2006. – с.102-104. 10. Лидин Р.А. Химические свойства неорганических веществ: Учеб. пособие для вузов. – 3-е изд., испр. – М.: Химия, 2000. – с.399.