
Инженерный вестник Дона, №2 (20266) 
ivdon.ru/ru/magazine/archive/n2y2026/10729 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2026 

Multimodal Deep Learning for Cognitive Fatigue Detection in E-Learning 

Using Eye-Tracking and Electroencephalography 

I.H. Ajayi, E.Y. Avksentieva 
 ITMO University  

 

Abstract: Recent growth in online learning has created a need for reliable methods to monitor 
learner engagement, cognitive load, and fatigue. This study presents a deep learning framework 
that integrates eye-tracking data with electroencephalogram features to classify engagement 
levels in digital learning environments. Eye-tracking indicators of cognitive load, including pupil 
dilation, blink rate, fixation duration, and saccade velocity, were extracted from a publicly 
available dataset and combined with Electroencephalography (EEG) measures. Engagement 
level was modelled as a three-class problem, including low, moderate, and high, using hybrid 
Convolutional Neural Network- Long Short-Term Memory architecture designed to capture both 
spatial and temporal patterns. The model achieved an overall accuracy of approximately 89 
percent with high precision and recall across categories. Analysis of variance showed that no 
single feature could reliably distinguish engagement levels, underscoring the benefit of 
multimodal deep learning. The study highlights how combining eye-tracking measures with EEG 
signals can offer a clearer, real-time picture of learners’ cognitive states during e-learning 
activities. By detecting moments when attention declines or cognitive fatigue begins to set in, 
such systems can enable genuinely adaptive learning platforms, ones that know when to suggest 
brief breaks, adjust the pace of instruction, or provide timely, targeted support to help learners 
stay engaged. 
Keywords: cognitive fatigue, deep learning, e-learning, eye-tracking, learning engagement, 
electroencephalography. 
 

Introduction 

The rapid development of online learning platforms has transformed the 

landscape of education in recent years. Learning Management Systems (LMS) now 

provide students with flexibility, accessibility, and scalability, allowing them to 

access educational materials anytime and anywhere using simple technological 

devices. However, in remote or self-paced online learning, LMS metrics such as 

clicks, time on task, and quiz scores often fail to capture subtle, moment-to-

moment fluctuations in attention, cognitive load, or mental effort, as well as other 

factors influencing comprehension, engagement, and fatigue. 

Eye tracking offers a sensitive window into learners' cognitive states on 

digital learning platforms. For example, [1] found that eye-tracking metrics can 



Инженерный вестник Дона, №2 (20266) 
ivdon.ru/ru/magazine/archive/n2y2026/10729 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2026 

capture differences in cognitive processing depending on how learning content is 

presented. Under theoretical frameworks like Cognitive Load Theory (CLT) and 

the Cognitive Theory of Multimedia Learning (CTML), eye-tracking features such 

as fixation duration, saccades, dwell time, and pupil-based metrics are widely used 

to assess students' cognitive processes, attention allocation, and cognitive load [2]. 

Moreover, eye-tracking has been effectively applied across a variety of learning 

tasks, age groups, and subject areas, demonstrating its broad applicability for 

educational research [3]. Empirical studies on reading comprehension indicate that 

eye-tracking metrics like gaze durations and fixation times are reliable indicators 

of cognitive processing and comprehension, significantly predicting learning 

outcomes among school-age learners [4,5]. 

Detection of cognitive load in controlled laboratory tasks can be further 

enhanced by multimodal approaches that combine eye-tracking with physiological 

measurements such as Eelectroencephalography (EEG) or Functional Near-

Infrared Spectroscopy (fNIRS). Research shows that integrating gaze patterns with 

EEG or fNIRS improves sensitivity to mental workload and attentional 

engagement, suggesting a promising avenue for adaptive e-learning systems [6,7]. 

Additionally, convolutional neural networks have successfully distinguished low- 

versus high-cognitive-load states using raw eye-tracking time-series data, 

demonstrating that gaze data alone conveys significant information about mental 

effort levels [8,9]. 

Combining these findings opens viable pathways for cognitive-aware, 

adaptive e-learning systems. Such systems can dynamically monitor learners’ 

cognitive load, attention, and fatigue using eye-tracking technology, either alone or 

alongside physiological signals, and apply machine learning techniques to these 

data streams. This approach goes beyond conventional LMS analytics or recurring 

self-report measures, enabling near real-time interventions such as adaptive pacing, 

break recommendations, or personalized content delivery. 
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Despite advances in online learning, extended use of LMS platforms can 

lead to cognitive fatigue, characterized by visual strain, discomfort, and decreased 

attention, ultimately resulting in disengagement. Conventional LMS metrics are 

limited in capturing fine-grained changes in cognitive effort, attention, or fatigue 

during extended learning sessions. Moreover, most empirical studies are conducted 

in controlled, short-term settings, leaving a gap in understanding engagement and 

cognitive load fluctuations over long-term, real-world courses. There is a clear 

need for scalable, real-time systems that integrate physiological and behavioral 

indicators to monitor cognitive states and support adaptive interventions. 

This study proposes a multimodal deep learning framework to address this 

gap. It integrates eye-tracking features such as gaze patterns, fixation points, and 

pupil dynamics and, where possible, Neurophysiological signals like EEG and 

fNIRS. The framework aims to classify learning scenarios into different 

engagement, fatigue, or cognitive load levels, thereby supporting adaptive e-

learning environments that enhance sustained focus, deep engagement, and 

improved learning outcomes. 

Literature Review 

People can now interact with a multitude of educational resources from 

home thanks to the quick growth of online learning, which has greatly improved 

accessibility and flexibility to educational materials. This change offers advantages 

over traditional classroom-based learning by allowing students to customize their 

learning experiences, access a variety of educational resources, and advance at 

their own speeds. However, extended use of this technology can lead to some form 

of cognitive fatigue, which is characterized by visual strain, discomfort, and 

decreased ocular comfort and ultimately disengagement, especially during long 

virtual sessions or remote classes [10]. This kind of stress, which is frequently 

brought on by prolonged screen time, can impair focus and general learning 

efficacy. These findings raised uncertainty about the ability of conventional LMS-
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based behavioral metrics, such as clicks, time on task, and quiz scores, to measure 

the minute, time-dependent changes in attention, cognitive effort, or fatigue that 

take place during extended online learning. 

Physiological and behavioral measures have become useful indicators of 

underlying mental and cognitive states to help address these limitations. For 

instance, effective classification of mental workload using machine learning 

algorithms has been achieved by combining EEG recordings with eye-tracking 

during n-back working memory tasks [11]. Eye-tracking alone has also 

demonstrated significant predictive power. 

According to [12] employed deep learning on eye-movement data to 

distinguish between low and high cognitive load with approximately 87.5% 

accuracy. More generally, systematic reviews show that, especially in multimedia 

or immersive learning environments, EEG spectral features such as theta and alpha 

bands and gaze metrics such as fixation duration, pupil dilation consistently reflect 

workload and attentional effort [13]. All of this evidence points to a more sensitive 

and dynamic approach than traditional behavioral metrics for tracking cognitive 

states, such as mental effort, fatigue, and engagement, by combining physiological 

and behavioral indicators enhanced through AI and machine learning. 

Combining eye-tracking data with other physiological signals, like EEG, 

improves AI's predictive performance in evaluating cognitive states. By reducing 

noise and individual variability, this integration improves the accuracy of mental 

workload detection [11,13]. By using these multimodal indicators, Artificial 

intelligence systems can deduce changes in cognitive effort and attention, which 

may lead to adaptive learning interventions like suggesting pacing adjustments or 

breaks. Lab-based and multimedia learning studies have shown the viability of 

such approaches, although real-world implementations in full-scale online courses 

are still scarce.  
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Eye-tracking metrics, such as pupil dilation, blink rate, and saccadic 

movements, are powerful markers of cognitive load and engagement, according to 

recent research. For instance, in multimedia learning contexts, it has been 

demonstrated that pupil dilation during instructional video viewing correlates with 

cognitive load [14]. By offering complementary neural measures of attentional 

demand and mental effort, eye-tracking and EEG together improve detection [11]. 

These results validate the viability of AI-driven eye-tracking systems as a time 

sensitive and dynamic substitute for traditional LMS metrics in tracking learner 

engagement and cognitive workload. 

Simultaneously, low-cost, scalable eye-tracking technologies are being used 

more and more as the basis for adaptive interventions in digital learning 

environments due to advancements in learning analytics. Online experiments using 

deep learning models for webcam eye tracking [15] showed that commercially 

available webcams can accurately identify gaze position, fixations, and blinks in 

participants completing typical eye-tracking tasks when processed using 

appearance based deep learning algorithms. This suggests that eye-tracking, which 

was previously restricted to costly lab equipment, can now be democratized for 

online environments, removing a significant obstacle to widespread 

implementation. 

Furthermore, it has been demonstrated that combining ocular metrics with 

neurophysiological data enhances cognitive load detection. [11] Collected 

simultaneous EEG and eye-tracking data from participants completing n-back 

memory tasks as part of a study on the assessment of mental workload using 

machine learning techniques based on EEG and eye-tracking data. Multimodal 

physiological and ocular features can dynamically infer mental workload, as 

demonstrated by a four-class classification model that achieved 76.6% accuracy. In 

a similar vein, a systematic review evaluating cognitive load in 3D learning 

environments using EEG and eye-tracking [13] verified that these metrics are 
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frequently used to assess cognitive load and attentional demand in immersive and 

multimedia learning contexts, either separately or in combination. However, the 

environment, individual differences, and task design all affect the results. 

When combined, these studies provide a solid basis for the creation of 

physiology driven, adaptive e-learning systems. Compared to static metrics like 

time on task or quiz scores, real-time gaze tracking via webcams, 

neurophysiological signals, and machine learning models provides a dynamic 

approach to detecting mental workload and engagement.  

Despite these developments, the majority of empirical research is still limited to 

short-term or laboratory settings rather than extensive, long-term online courses. 

For instance, rather than sustained learning in real-world settings, webcam-based 

eye-tracking validations were carried out with small participant samples and 

restricted controlled tasks. Similarly, memory task paradigms were used instead of 

real educational content in workload detection studies [11]. As a result, assertions 

regarding fully automated adaptive learning, such as break prompts, fatigue 

detection, or pace modifications, remain mainly theoretical. It is still difficult to 

apply results from controlled experiments to real-world e-learning, especially in 

light of variations in devices, settings, lighting, and user behaviour. 

However, recent research highlights limitations for long-term, adaptive, 

fatigue-aware e-learning systems and increasingly supports webcam-based eye-

tracking or low-cost gaze estimation as a feasible tool for learning analytics. In 

remote, unsupervised experimental tasks, deep learning models for webcam eye 

tracking [15] showed that commercial webcams, in conjunction with deep learning 

gaze/blink detection, can accurately record gaze behaviours, such as fixations, 

saccades, and blinks. This implies that precise gaze measurement is no longer 

solely dependent on expensive lab equipment. 

Classic eye-tracking effects were successfully replicated using webcams in a 

companion validation study, the validation of online webcam-based eye tracking: 
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The replication of the cascade effect, the novelty preference, and the visual world 

paradigm [16]. The study found that online webcam-based tracking can 

approximate laboratory-based gaze patterns under real-world conditions, despite a 

20–27% reduction in effect sizes. 

Extending this viewpoint, a scoping review of webcam eye tracking in 

education and learning [17] revealed increasing use in a variety of educational 

contexts, such as online learning, reading assignments, and self-regulated learning. 

Although there are still methodological issues, the review shows that gaze 

measures are becoming more applicable and scalable for researching learning 

behaviour, attention, and engagement outside of lab settings. Scalability is further 

supported by encouraging advancements in real-time gaze estimation using 

inexpensive hardware. For example, [18] reported successful real-time gaze 

tracking using convolutional neural networks and standard webcams, providing an 

approachable substitute that might facilitate widespread implementation in 

educational settings (Fig.1). 

                                                     Learner using E-learning LMS

               Engagement & Fatigue Level       Multimodal Feature Fusion        Data Acquisition 

Preprocessing Module      
 Noise Filtering             

 Blink/Saccade Detection     
 Feature Extraction 

   (Eye-tracking + EEG vectors)

Hybrid Deep Learning Model     
(CNN-LSTM)                

Spatial Pattern Learning (CNN)    
Temporal Dynamics (LSTM)   

 Classification Output     
 (Low / Medium / High)

Adaptive Intervention Engine   
Trigger rules (confidence)  

Adjust content pacing        
Prevent fatigue & disengage

     (Webcam Eye-Tracking + EEG)    

 
Fig 1. – Conceptual framework 

 

Methodology 

Eye-tracking features including pupil dilation, blink rate, fixation duration, 

saccade velocity, and fixation stability were collected from participants during 

learning tasks. EEG measures were integrated where available to provide 
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complementary neurophysiological insights. These multimodal data were used as 

input for a hybrid CNN-LSTM deep learning model designed to capture both 

spatial and temporal patterns in cognitive and attentional states. 

The CNN-LSTM model treats engagement as a sequential behavioral 

stream, allowing it to identify subtle distinctions between low, medium, and high 

focus levels. Each sample in the dataset was labelled with one of three engagement 

categories: Low Engagement (0) indicating early fatigue or distraction, Medium 

Engagement (1) representing sustained focus, and High Engagement (2) 

representing peak concentration. The model was trained using a multiclass cross-

entropy loss function and optimized via gradient descent, with dropout and batch 

normalization applied to enhance generalization. 

The LSTM layers incorporated standard gating mechanisms: the forget gate 

(deciding what to discard from the cell state), the input gate (deciding what new 

information to add), the candidate cell (proposing new content), the cell state 

update (combining prior and candidate information), and the output gate (deciding 

what to output as the hidden state). A final dense layer with SoftMax activation 

produced a probability distribution over the three engagement classes. Statistical 

analysis, specifically one-way analysis of variance, was performed to evaluate 

whether individual eye-tracking features significantly differentiated engagement 

levels. 

Eye-Tracking Data and Features: We collected eye-tracking features 

known to reflect cognitive load and fatigue, including pupil dilation, blink rate, 

fixation duration, saccade velocity, and fixation stability. These features form the 

input matrix 

 ,        (1) 

Let: 

N = number of samples 



Инженерный вестник Дона, №2 (20266) 
ivdon.ru/ru/magazine/archive/n2y2026/10729 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2026 

F = number of features 

X={x1,x2,…,xN}, where each xi ∈F 

Each sample is labelled with an engagement category 

yi ∈{0,1,2} 

fθ: x→ y is the model that maps input features to an engagement class. 

 ,        (2) 

Where: 

N is the number of training samples, 

yi,c indicates whether sample i belongs to class c 

y^i,c  is the predicted probability that sample i belongs to class c. 

This framework ensures that the model learns to map eye-tracking features 

to engagement levels by minimizing the multiclass cross-entropy loss, 

Model Architecture: The research employs hybrid CNN-LSTM 

architecture to capture intricate patterns in eye-tracking features. The LSTM layer 

summarizes the patterns that convolutional layers first extract from the eye-

tracking features to classify them. Standard gating mechanisms are used by the 

LSTM: 

 ,                                                (3)                                                                                     

Where;   

Forget gate    ( ) – decides which information to discard from the cell state. 

Input gate        ( ) – decides which new information to add to the cell state. 

Candidate cell ( ) – the new content that could be added to the state. 

Output gate  ( ) – decides which part of the cell state to output as the 

hidden state. 

Finally, a dense layer with SoftMax activation converts the last hidden state 

into a probability distribution over the three engagement classes. This architecture 
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allows the model to treat engagement as a sequential behavioral stream, 

distinguishing even subtle nuances between medium and high focus levels that 

simpler models often miss. 

Training and Evaluation: A 20% test set and an 80% training set were 

created from the data. We used dropout and batch normalization in the network to 

enhance generalization. Until the training loss stabilized, the model was trained for 

50 epochs. Standard metrics such as accuracy, precision, recall, F1-score, and the 

confusion matrix were used to assess its performance. Strong generalization was 

demonstrated by the CNN-LSTM's overall test accuracy of about 88.7% (with 

validation accuracy of 89.0%). Due to their similar physiological signatures, the 

majority of errors happened between the medium and high engagement classes. 

Statistical Analysis of Features: To see if any single eye-tracking feature 

differed significantly across engagement levels, we conducted a one-way analysis 

of variance for each feature. We modelled each measurement as 

                                                                     (4) 

Where the overall mean is the effect of engagement and is a random 

error for the participant . We tested the null hypothesis by 

computing the F-statistic (between-group vs within-group variance). For features, 

with We would follow up with post-hoc Tukey tests to identify which 

engagement levels differ. This analysis identifies which eye metrics change 

meaningfully with engagement state. 

 

Results and Performance Evaluation 

Using the public Student Engagement EEG eye-tracking dataset, our CNN-

LSTM model demonstrated robust performance. It achieved a test accuracy of 

0.8865 and a validation accuracy of 0.8905. Table 1 summarizes key results.  

Table 1. CNN–LSTM Model Performance 
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Metric Score 

Test Accuracy 0.8865 

Validation Accuracy 0.8905 

Test Loss 0.89 

Number of Classes 3 

 

Table 2 shows that the low-engagement category (label 0) achieved a 

precision of 0.88 and a recall of 0.91, resulting in an F1-score of 0.90. This strong 

recall indicates that the model is highly effective at identifying early signs of 

cognitive fatigue and rarely misses instances where learners begin to disengage. 

Table 2. Classification Report 

Engagement 

Level 
Precision Recall F1-Score 

Low (0) 0.88 0.91 0.90 

Medium (1) 0.93 0.85 0.89 

High (2) 0.83 0.92 0.88 

 

 

Table 3 displays balanced precision/recall for all classes (F1 = 0.89 each). 

Traditional models, on the other hand, did poorly: random forest achieved 0.32 

accuracy, while logistic regression and Naive Bayes only achieved 0.35 accuracy 

(see Table 3). These baselines were greatly outperformed by the CNN–LSTM, 

demonstrating the importance of modelling a hybrid deep learning architecture, as 

static models frequently defaulted to the majority class.  

Table 3. Model Performance Metrics 

Model Accuracy Precision Recall 
F1-

Score 
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Logistic 

Regression 
0.37 0.37 0.37 0.27 

Random 

Forest 
0.32 0.30 0.32 0.29 

Naïve 

Bayes 
0.35 0.29 0.35 0.24 

CNN–

LSTM  
0.8865 0.89 0.89 0.89 

 

Crucially, no significant differences between engagement levels were 

discovered by the analysis of variance on static feature averages (all p>0.05). Table 

4 illustrates this. For instance, the pupil dilation feature had p=0.1512 (not 

significant). Our use of a deep-learning approach is justified by these results, 

which suggest that no single averaged eye metric can accurately distinguish 

engagement. 

Table 4.  Analysis of Variance Results Showing Feature Significance 

Feature F-Statistic p-Value Significance 

Delta PSD 0.0249 0.9753 Not significant 

Theta PSD 1.3415 0.2616 Not significant 

Alpha PSD 2.7708 0.0628 Not significant 

Beta PSD 2.4756 0.0843 Not significant 

Gamma PSD 0.0128 0.9873 Not significant 

Pupil Dilation 1.8901 0.1512 Not significant 

Blink Rate 0.8359 0.4335 Not significant 

Fixation 

Duration 
0.1946 0.8231 Not significant 

Saccade 0.0588 0.9428 Not significant 
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Velocity 

 

Discussion and Conclusion 

The study's findings show that a hybrid CNN-LSTM model can successfully 

categorize learner engagement levels using gaze-derived and multimodal 

physiological data, particularly eye-tracking metrics. This is consistent with earlier 

studies demonstrating that convolutional neural networks can accurately identify 

cognitive load states from eye-movement data. For instance, using only eye 

tracking in age-based cognitive tasks, the [12] study showed 87.5% accuracy in 

differentiating between low and high cognitive load. 

More broadly, it has been shown that classification performance is enhanced 

when eye-tracking is combined with other physiological characteristics. Recent 

work incorporating fNIRS and eye tracking in cognitive tasks demonstrates that 

hybrid deep-learning models can robustly capture temporal fluctuations in 

cognitive load [19]. Multimodal studies that incorporate EEG and eye tracking also 

show that gaze combined with physiological measures improves the predictive 

power of workload and engagement models [11]. These results support the 

viability of modelling attentional and cognitive states using multimodal temporal 

data. 

Using temporal sequences of gaze metrics, such as pupil dilation, fixation 

durations, and saccade/blink events, provides a richer, more sensitive 

representation of cognitive and attentional dynamics than more straightforward 

static or aggregated-feature models. For adaptive e-learning systems, CNN-LSTM 

and other deep learning frameworks hold great potential. Theoretically, these 

systems could make real-time changes, like changing the difficulty of the content, 

suggesting breaks, or changing the pace of the lesson based on how engaged or 

cognitively loaded the learner is. 
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Empirical research is increasingly demonstrating the feasibility of eye-

tracking in actual educational environments. For instance, eye-tracking revealed 

real-time gaze patterns during authentic learning tasks and effectively monitored 

students' problem-solving behaviour in university-level geometry tasks using 

GeoGebra [20]. Eye-tracking studies of reading comprehension among primary-

school children similarly demonstrate that gaze metrics can predict learning 

outcomes in natural tasks [3]. Furthermore, case studies that incorporate real-time 

gaze tracking into in-person classroom interactions demonstrate that this kind of 

monitoring is technically possible outside of lab settings [21]. Broader literature 

reviews confirm a growing trend toward ecologically valid and scalable eye-

tracking applications in a range of learning domains, including reading, 

mathematics, and multimedia learning [2]. 

Despite these developments, there are still a number of restrictions. Our 

understanding of engagement and cognitive load fluctuations over extended 

learning periods is limited because the majority of applied studies are still short-

term or session-based rather than longitudinal across entire courses. Additionally, 

while gaze metrics are informative, integrating multiple physiological and 

behavioral modalities could further enhance predictive accuracy and 

generalizability across learners, tasks, and contexts. Because of differences in 

devices, environments, and individual differences in visual and attentional 

behaviour, it is still difficult to translate eye-tracking research into fatigue-aware, 

adaptive e-learning systems. 

As a result, a clear research gap remains. Advancing fine-grained temporal 

modelling of engagement and cognitive load will require future studies to collect 

sequential, real-time, multimodal datasets in authentic e-learning environments. 

Such research should carefully evaluate the effectiveness of fatigue-aware and 

attention-aware interventions, identify optimal window sizes and segmentation 

strategies for sequential models, and explore the integration of complementary 
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modalities such as EEG, functional near-infrared spectroscopy, heart rate 

variability, and detailed interaction logs. In addition, implementing continuous 

monitoring systems in real-world learning contexts must be guided by rigorous 

ethical considerations, including the protection of data privacy, obtaining informed 

consent, and ensuring the comfort and autonomy of learners. This study 

demonstrates that multimodal deep-learning frameworks leveraging physiological 

signals and eye-tracking data can accurately model cognitive load and engagement. 

These findings provide a foundation for developing adaptive, fatigue-aware e-

learning systems. By capturing dynamic cognitive states in real time, such systems 

have the potential to enhance learning outcomes, reduce cognitive fatigue, and 

support sustained attention, contributing to the advancement of intelligent and 

responsive multimodal e-learning environments. 
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