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Abstract: Recent growth in online learning has created a need for reliable methods to monitor
learner engagement, cognitive load, and fatigue. This study presents a deep learning framework
that integrates eye-tracking data with electroencephalogram features to classify engagement
levels in digital learning environments. Eye-tracking indicators of cognitive load, including pupil
dilation, blink rate, fixation duration, and saccade velocity, were extracted from a publicly
available dataset and combined with Electroencephalography (EEG) measures. Engagement
level was modelled as a three-class problem, including low, moderate, and high, using hybrid
Convolutional Neural Network- Long Short-Term Memory architecture designed to capture both
spatial and temporal patterns. The model achieved an overall accuracy of approximately 89
percent with high precision and recall across categories. Analysis of variance showed that no
single feature could reliably distinguish engagement levels, underscoring the benefit of
multimodal deep learning. The study highlights how combining eye-tracking measures with EEG
signals can offer a clearer, real-time picture of learners’ cognitive states during e-learning
activities. By detecting moments when attention declines or cognitive fatigue begins to set in,
such systems can enable genuinely adaptive learning platforms, ones that know when to suggest
brief breaks, adjust the pace of instruction, or provide timely, targeted support to help learners
stay engaged.

Keywords: cognitive fatigue, deep learning, e-learning, eye-tracking, learning engagement,
electroencephalography.

Introduction

The rapid development of online learning platforms has transformed the
landscape of education in recent years. Learning Management Systems (LMS) now
provide students with flexibility, accessibility, and scalability, allowing them to
access educational materials anytime and anywhere using simple technological
devices. However, in remote or self-paced online learning, LMS metrics such as
clicks, time on task, and quiz scores often fail to capture subtle, moment-to-
moment fluctuations in attention, cognitive load, or mental effort, as well as other
factors influencing comprehension, engagement, and fatigue.

Eye tracking offers a sensitive window into learners' cognitive states on

digital learning platforms. For example, [1] found that eye-tracking metrics can
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capture differences in cognitive processing depending on how learning content is
presented. Under theoretical frameworks like Cognitive Load Theory (CLT) and
the Cognitive Theory of Multimedia Learning (CTML), eye-tracking features such
as fixation duration, saccades, dwell time, and pupil-based metrics are widely used
to assess students' cognitive processes, attention allocation, and cognitive load [2].
Moreover, eye-tracking has been effectively applied across a variety of learning
tasks, age groups, and subject areas, demonstrating its broad applicability for
educational research [3]. Empirical studies on reading comprehension indicate that
eye-tracking metrics like gaze durations and fixation times are reliable indicators
of cognitive processing and comprehension, significantly predicting learning
outcomes among school-age learners [4,5].

Detection of cognitive load in controlled laboratory tasks can be further
enhanced by multimodal approaches that combine eye-tracking with physiological
measurements such as Eelectroencephalography (EEG) or Functional Near-
Infrared Spectroscopy (fNIRS). Research shows that integrating gaze patterns with
EEG or fNIRS improves sensitivity to mental workload and attentional
engagement, suggesting a promising avenue for adaptive e-learning systems [6,7].
Additionally, convolutional neural networks have successfully distinguished low-
versus high-cognitive-load states using raw eye-tracking time-series data,
demonstrating that gaze data alone conveys significant information about mental
effort levels [8,9].

Combining these findings opens viable pathways for cognitive-aware,
adaptive e-learning systems. Such systems can dynamically monitor learners’
cognitive load, attention, and fatigue using eye-tracking technology, either alone or
alongside physiological signals, and apply machine learning techniques to these
data streams. This approach goes beyond conventional LMS analytics or recurring
self-report measures, enabling near real-time interventions such as adaptive pacing,

break recommendations, or personalized content delivery.
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Despite advances in online learning, extended use of LMS platforms can
lead to cognitive fatigue, characterized by visual strain, discomfort, and decreased
attention, ultimately resulting in disengagement. Conventional LMS metrics are
limited in capturing fine-grained changes in cognitive effort, attention, or fatigue
during extended learning sessions. Moreover, most empirical studies are conducted
in controlled, short-term settings, leaving a gap in understanding engagement and
cognitive load fluctuations over long-term, real-world courses. There is a clear
need for scalable, real-time systems that integrate physiological and behavioral
indicators to monitor cognitive states and support adaptive interventions.

This study proposes a multimodal deep learning framework to address this
gap. It integrates eye-tracking features such as gaze patterns, fixation points, and
pupil dynamics and, where possible, Neurophysiological signals like EEG and
fNIRS. The framework aims to classify learning scenarios into different
engagement, fatigue, or cognitive load levels, thereby supporting adaptive e-
learning environments that enhance sustained focus, deep engagement, and

improved learning outcomes.

Literature Review

People can now interact with a multitude of educational resources from
home thanks to the quick growth of online learning, which has greatly improved
accessibility and flexibility to educational materials. This change offers advantages
over traditional classroom-based learning by allowing students to customize their
learning experiences, access a variety of educational resources, and advance at
their own speeds. However, extended use of this technology can lead to some form
of cognitive fatigue, which is characterized by visual strain, discomfort, and
decreased ocular comfort and ultimately disengagement, especially during long
virtual sessions or remote classes [10]. This kind of stress, which is frequently
brought on by prolonged screen time, can impair focus and general learning

efficacy. These findings raised uncertainty about the ability of conventional LMS-
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based behavioral metrics, such as clicks, time on task, and quiz scores, to measure
the minute, time-dependent changes in attention, cognitive effort, or fatigue that
take place during extended online learning.

Physiological and behavioral measures have become useful indicators of
underlying mental and cognitive states to help address these limitations. For
instance, effective classification of mental workload using machine learning
algorithms has been achieved by combining EEG recordings with eye-tracking
during n-back working memory tasks [11]. Eye-tracking alone has also
demonstrated significant predictive power.

According to [12] employed deep learning on eye-movement data to
distinguish between low and high cognitive load with approximately 87.5%
accuracy. More generally, systematic reviews show that, especially in multimedia
or immersive learning environments, EEG spectral features such as theta and alpha
bands and gaze metrics such as fixation duration, pupil dilation consistently reflect
workload and attentional effort [13]. All of this evidence points to a more sensitive
and dynamic approach than traditional behavioral metrics for tracking cognitive
states, such as mental effort, fatigue, and engagement, by combining physiological
and behavioral indicators enhanced through Al and machine learning.

Combining eye-tracking data with other physiological signals, like EEG,
improves Al's predictive performance in evaluating cognitive states. By reducing
noise and individual variability, this integration improves the accuracy of mental
workload detection [11,13]. By using these multimodal indicators, Artificial
intelligence systems can deduce changes in cognitive effort and attention, which
may lead to adaptive learning interventions like suggesting pacing adjustments or
breaks. Lab-based and multimedia learning studies have shown the viability of
such approaches, although real-world implementations in full-scale online courses

are still scarce.
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Eye-tracking metrics, such as pupil dilation, blink rate, and saccadic
movements, are powerful markers of cognitive load and engagement, according to
recent research. For instance, in multimedia learning contexts, it has been
demonstrated that pupil dilation during instructional video viewing correlates with
cognitive load [14]. By offering complementary neural measures of attentional
demand and mental effort, eye-tracking and EEG together improve detection [11].
These results validate the viability of Al-driven eye-tracking systems as a time
sensitive and dynamic substitute for traditional LMS metrics in tracking learner
engagement and cognitive workload.

Simultaneously, low-cost, scalable eye-tracking technologies are being used
more and more as the basis for adaptive interventions in digital learning
environments due to advancements in learning analytics. Online experiments using
deep learning models for webcam eye tracking [15] showed that commercially
available webcams can accurately identify gaze position, fixations, and blinks in
participants completing typical eye-tracking tasks when processed using
appearance based deep learning algorithms. This suggests that eye-tracking, which
was previously restricted to costly lab equipment, can now be democratized for
online environments, removing a significant obstacle to widespread
implementation.

Furthermore, it has been demonstrated that combining ocular metrics with
neurophysiological data enhances cognitive load detection. [11] Collected
simultaneous EEG and eye-tracking data from participants completing n-back
memory tasks as part of a study on the assessment of mental workload using
machine learning techniques based on EEG and eye-tracking data. Multimodal
physiological and ocular features can dynamically infer mental workload, as
demonstrated by a four-class classification model that achieved 76.6% accuracy. In
a similar vein, a systematic review evaluating cognitive load in 3D learning

environments using EEG and eye-tracking [13] verified that these metrics are
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frequently used to assess cognitive load and attentional demand in immersive and
multimedia learning contexts, either separately or in combination. However, the
environment, individual differences, and task design all affect the results.

When combined, these studies provide a solid basis for the creation of
physiology driven, adaptive e-learning systems. Compared to static metrics like
time on task or quiz scores, real-time gaze tracking via webcams,
neurophysiological signals, and machine learning models provides a dynamic
approach to detecting mental workload and engagement.
Despite these developments, the majority of empirical research is still limited to
short-term or laboratory settings rather than extensive, long-term online courses.
For instance, rather than sustained learning in real-world settings, webcam-based
eye-tracking validations were carried out with small participant samples and
restricted controlled tasks. Similarly, memory task paradigms were used instead of
real educational content in workload detection studies [11]. As a result, assertions
regarding fully automated adaptive learning, such as break prompts, fatigue
detection, or pace modifications, remain mainly theoretical. It is still difficult to
apply results from controlled experiments to real-world e-learning, especially in
light of variations in devices, settings, lighting, and user behaviour.

However, recent research highlights limitations for long-term, adaptive,
fatigue-aware e-learning systems and increasingly supports webcam-based eye-
tracking or low-cost gaze estimation as a feasible tool for learning analytics. In
remote, unsupervised experimental tasks, deep learning models for webcam eye
tracking [15] showed that commercial webcams, in conjunction with deep learning
gaze/blink detection, can accurately record gaze behaviours, such as fixations,
saccades, and blinks. This implies that precise gaze measurement is no longer
solely dependent on expensive lab equipment.

Classic eye-tracking effects were successfully replicated using webcams in a

companion validation study, the validation of online webcam-based eye tracking:
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The replication of the cascade effect, the novelty preference, and the visual world
paradigm [16]. The study found that online webcam-based tracking can
approximate laboratory-based gaze patterns under real-world conditions, despite a
20-27% reduction in effect sizes.

Extending this viewpoint, a scoping review of webcam eye tracking in
education and learning [17] revealed increasing use in a variety of educational
contexts, such as online learning, reading assignments, and self-regulated learning.
Although there are still methodological issues, the review shows that gaze
measures are becoming more applicable and scalable for researching learning
behaviour, attention, and engagement outside of lab settings. Scalability is further
supported by encouraging advancements in real-time gaze estimation using
inexpensive hardware. For example, [18] reported successful real-time gaze
tracking using convolutional neural networks and standard webcams, providing an
approachable substitute that might facilitate widespread implementation in

educational settings (Fig.1).

\

Learner using E-learning LMS

Data Acquisition Multimodal Feature Fusion Engagement & Fatigue Level
Hybrid Deep Learning Model Classification Output
(Webcam Eye-Tracking + EEG) (CNN-LSTM) il (Low / Medium / High)
Spatial Pattern Learning (CNN)
Temporal Dynamics (LSTM)

Preprocessing Module Adaptive Intervention Engine
Noise Filtering Trigger rules (confidence)

Blink/Saccade Detection (Eye-tracking + EEG vectors) Adjust c.ontent p?clng
Feature Extraction Prevent fatigue & disengage

Fig 1. — Conceptual framework

Methodology
Eye-tracking features including pupil dilation, blink rate, fixation duration,
saccade velocity, and fixation stability were collected from participants during

learning tasks. EEG measures were integrated where available to provide
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complementary neurophysiological insights. These multimodal data were used as
input for a hybrid CNN-LSTM deep learning model designed to capture both
spatial and temporal patterns in cognitive and attentional states.

The CNN-LSTM model treats engagement as a sequential behavioral
stream, allowing it to identify subtle distinctions between low, medium, and high
focus levels. Each sample in the dataset was labelled with one of three engagement
categories: Low Engagement (0) indicating early fatigue or distraction, Medium
Engagement (1) representing sustained focus, and High Engagement (2)
representing peak concentration. The model was trained using a multiclass cross-
entropy loss function and optimized via gradient descent, with dropout and batch
normalization applied to enhance generalization.

The LSTM layers incorporated standard gating mechanisms: the forget gate
(deciding what to discard from the cell state), the input gate (deciding what new
information to add), the candidate cell (proposing new content), the cell state
update (combining prior and candidate information), and the output gate (deciding
what to output as the hidden state). A final dense layer with SoftMax activation
produced a probability distribution over the three engagement classes. Statistical
analysis, specifically one-way analysis of variance, was performed to evaluate
whether individual eye-tracking features significantly differentiated engagement
levels.

Eye-Tracking Data and Features: We collected eye-tracking features
known to reflect cognitive load and fatigue, including pupil dilation, blink rate,
fixation duration, saccade velocity, and fixation stability. These features form the

input matrix

X EHN X F
, (D

Let:

N = number of samples
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F = number of features

X={x1,x2,...,xN}, where each xi €F

Each sample is labelled with an engagement category

yi €{0,1,2}

f8: x— y 1s the model that maps input features to an engagement class.

L(B) = 1iiyi, clog(yi.)

i=1c=1

2)

Where:

N is the number of training samples,

yi,c indicates whether sample 1 belongs to class c

y™M,c 1s the predicted probability that sample 1 belongs to class c.

This framework ensures that the model learns to map eye-tracking features
to engagement levels by minimizing the multiclass cross-entropy loss,

Model Architecture: The research employs hybrid CNN-LSTM
architecture to capture intricate patterns in eye-tracking features. The LSTM layer
summarizes the patterns that convolutional layers first extract from the eye-
tracking features to classify them. Standard gating mechanisms are used by the
LSTM:
fe = 0,(Wexe + Usc, — 1 + by

: 3)
Where;

Forget gate (/) — decides which information to discard from the cell state.
Input gate (i) — decides which new information to add to the cell state.
Candidate cell (¢t) — the new content that could be added to the state.

Output gate (9:) — decides which part of the cell state to output as the
hidden state.
Finally, a dense layer with SoftMax activation converts the last hidden state

into a probability distribution over the three engagement classes. This architecture
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allows the model to treat engagement as a sequential behavioral stream,
distinguishing even subtle nuances between medium and high focus levels that
simpler models often miss.

Training and Evaluation: A 20% test set and an 80% training set were
created from the data. We used dropout and batch normalization in the network to
enhance generalization. Until the training loss stabilized, the model was trained for
50 epochs. Standard metrics such as accuracy, precision, recall, F1-score, and the
confusion matrix were used to assess its performance. Strong generalization was
demonstrated by the CNN-LSTM's overall test accuracy of about 88.7% (with
validation accuracy of 89.0%). Due to their similar physiological signatures, the
majority of errors happened between the medium and high engagement classes.

Statistical Analysis of Features: To sce if any single eye-tracking feature

differed significantly across engagement levels, we conducted a one-way analysis

of variance for each feature. We modelled each measurement Yijas

Kij:nu—l_ri-l_gij: )

Where the overall mean Tiis the effect of engagement and €ijis a random
error for the participant/. We tested the null hypothesis Hoi7T1 = T2 = Tsby
computing the F-statistic (between-group vs within-group variance). For features,
with P < 0.05We would follow up with post-hoc Tukey tests to identify which
engagement levels differ. This analysis identifies which eye metrics change

meaningfully with engagement state.

Results and Performance Evaluation
Using the public Student Engagement EEG eye-tracking dataset, our CNN-
LSTM model demonstrated robust performance. It achieved a test accuracy of
0.8865 and a validation accuracy of 0.8905. Table 1 summarizes key results.

Table 1. CNN-LSTM Model Performance
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Metric Score
Test Accuracy 0.8865
Validation Accuracy 0.8905
Test Loss 0.89
Number of Classes 3

Table 2 shows that the low-engagement category (label 0) achieved a
precision of 0.88 and a recall of 0.91, resulting in an F1-score of 0.90. This strong
recall indicates that the model is highly effective at identifying early signs of
cognitive fatigue and rarely misses instances where learners begin to disengage.

Table 2.  Classification Report

Engagement
Precision Recall F1-Score
Level
Low (0) 0.88 0.91 0.90
Medium (1) 0.93 0.85 0.89
High (2) 0.83 0.92 0.88

Table 3 displays balanced precision/recall for all classes (F1 = 0.89 each).
Traditional models, on the other hand, did poorly: random forest achieved 0.32
accuracy, while logistic regression and Naive Bayes only achieved 0.35 accuracy
(see Table 3). These baselines were greatly outperformed by the CNN-LSTM,
demonstrating the importance of modelling a hybrid deep learning architecture, as
static models frequently defaulted to the majority class.

Table 3. Model Performance Metrics

F1-
Model Accuracy | Precision | Recall
Score
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Logistic
. 0.37 0.37 0.37 0.27
Regression
Random
0.32 0.30 0.32 0.29
Forest
Naive
0.35 0.29 0.35 0.24
Bayes
CNN-
0.8865 0.89 0.89 0.89
LSTM

Crucially, no significant differences between engagement levels were
discovered by the analysis of variance on static feature averages (all p>0.05). Table
4 1illustrates this. For instance, the pupil dilation feature had p=0.1512 (not
significant). Our use of a deep-learning approach is justified by these results,
which suggest that no single averaged eye metric can accurately distinguish
engagement.

Table 4.  Analysis of Variance Results Showing Feature Significance

Feature F-Statistic | p-Value | Significance
Delta PSD 0.0249 0.9753 | Not significant
Theta PSD 1.3415 0.2616 | Not significant
Alpha PSD 2.7708 0.0628 | Not significant
Beta PSD 2.4756 0.0843 | Not significant

Gamma PSD 0.0128 0.9873 | Not significant
Pupil Dilation 1.8901 0.1512 | Not significant
Blink Rate 0.8359 0.4335 | Not significant

Fixation

. 0.1946 0.8231 | Not significant
Duration
Saccade 0.0588 0.9428 | Not significant
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Velocity

Discussion and Conclusion

The study's findings show that a hybrid CNN-LSTM model can successfully
categorize learner engagement levels using gaze-derived and multimodal
physiological data, particularly eye-tracking metrics. This is consistent with earlier
studies demonstrating that convolutional neural networks can accurately identify
cognitive load states from eye-movement data. For instance, using only eye
tracking in age-based cognitive tasks, the [12] study showed 87.5% accuracy in
differentiating between low and high cognitive load.

More broadly, it has been shown that classification performance is enhanced
when eye-tracking is combined with other physiological characteristics. Recent
work incorporating fNIRS and eye tracking in cognitive tasks demonstrates that
hybrid deep-learning models can robustly capture temporal fluctuations in
cognitive load [19]. Multimodal studies that incorporate EEG and eye tracking also
show that gaze combined with physiological measures improves the predictive
power of workload and engagement models [11]. These results support the
viability of modelling attentional and cognitive states using multimodal temporal
data.

Using temporal sequences of gaze metrics, such as pupil dilation, fixation
durations, and saccade/blink events, provides a richer, more sensitive
representation of cognitive and attentional dynamics than more straightforward
static or aggregated-feature models. For adaptive e-learning systems, CNN-LSTM
and other deep learning frameworks hold great potential. Theoretically, these
systems could make real-time changes, like changing the difficulty of the content,
suggesting breaks, or changing the pace of the lesson based on how engaged or

cognitively loaded the learner is.
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Empirical research is increasingly demonstrating the feasibility of eye-
tracking in actual educational environments. For instance, eye-tracking revealed
real-time gaze patterns during authentic learning tasks and effectively monitored
students' problem-solving behaviour in university-level geometry tasks using
GeoGebra [20]. Eye-tracking studies of reading comprehension among primary-
school children similarly demonstrate that gaze metrics can predict learning
outcomes in natural tasks [3]. Furthermore, case studies that incorporate real-time
gaze tracking into in-person classroom interactions demonstrate that this kind of
monitoring is technically possible outside of lab settings [21]. Broader literature
reviews confirm a growing trend toward ecologically valid and scalable eye-
tracking applications in a range of learning domains, including reading,
mathematics, and multimedia learning [2].

Despite these developments, there are still a number of restrictions. Our
understanding of engagement and cognitive load fluctuations over extended
learning periods is limited because the majority of applied studies are still short-
term or session-based rather than longitudinal across entire courses. Additionally,
while gaze metrics are informative, integrating multiple physiological and
behavioral modalities could further enhance predictive accuracy and
generalizability across learners, tasks, and contexts. Because of differences in
devices, environments, and individual differences in visual and attentional
behaviour, it is still difficult to translate eye-tracking research into fatigue-aware,
adaptive e-learning systems.

As a result, a clear research gap remains. Advancing fine-grained temporal
modelling of engagement and cognitive load will require future studies to collect
sequential, real-time, multimodal datasets in authentic e-learning environments.
Such research should carefully evaluate the effectiveness of fatigue-aware and
attention-aware interventions, identify optimal window sizes and segmentation

strategies for sequential models, and explore the integration of complementary
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modalities such as EEG, functional near-infrared spectroscopy, heart rate
variability, and detailed interaction logs. In addition, implementing continuous
monitoring systems in real-world learning contexts must be guided by rigorous
ethical considerations, including the protection of data privacy, obtaining informed
consent, and ensuring the comfort and autonomy of learners. This study
demonstrates that multimodal deep-learning frameworks leveraging physiological
signals and eye-tracking data can accurately model cognitive load and engagement.
These findings provide a foundation for developing adaptive, fatigue-aware e-
learning systems. By capturing dynamic cognitive states in real time, such systems
have the potential to enhance learning outcomes, reduce cognitive fatigue, and
support sustained attention, contributing to the advancement of intelligent and

responsive multimodal e-learning environments.
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