

Моделирование и визуализация траекторий гиба трубы с помощью МЭМСдатчика

Е Тет Линн, Хтет Сое Паинг, Чжо Сое Вин

Национальный исследовательский университет «Московский Институт Электронной Техники»

Аннотация: В данной работе предлагаются моделирование и визуализация траекторий движения трубы в трубогибочном станке. Представлены математические уравнения для преобразования данных кватерниона в угловые данные Эйлера. В работе используется метод двойного интегрирования на данных ускорения от МЭМС-датчика IMU-9250 для получения реалистичных скорости и местоположения. Реализована программа в среде МАТLAB для визуализации траекторий движения трубы в 3-d представлении. Ключевые слова: траектория движения объекта, устройства инерциального измерения.

Ключевые слова: траектория движения объекта, устройства инерциального измерения, МЭМС.

1. Введение

Технология свободной гибки значительно отличается от обычного метода гибки труб тем, что в этом процессе не требуется менять гибочную матрицу при изменении радиуса изгиба. На рис.1 показана модель системы свободного изгиба.

В процессе гибки труба проталкивается через гибочную матрицу со скоростью V. В то же время сферический подшипник перемещается вдоль направления В плоскости X/Y. Движение сферического заданного подшипника приводит к тому, что гибочная матрица вращается вокруг направляющей. Направляющий аппарат остается неподвижным в течение всего процесса и предназначен для управления углом наклона гибочной матрицы. Эксцентриситет U создается между центром гибочной матрицы и Ζ направлении, перпендикулярном Z. осью В оси перемещением сферического подшипника. Величина U определяет радиус изгиба. Вообще говоря, маленький U приводит к большому радиусу изгиба, в то время как большой U приводит к малому радиусу изгиба. Но связь между U и радиусом

изгиба R не является фиксированной. Большое отклонение размеров произойдет, если труба будет согнута в соответствии с математической моделью без учета соотношения U-R. Таким образом, необходимо получить точное отношение U-R определенной трубки. Величина U не бесконечна. Umax определяется требованиями к качеству формовки труб, так как равномерность толщины стенки и скорость деформации сечения зависят от U. Анализ процесса свободного изгиба показан на рис.2. В процессе гибки внешние силы, действующие на трубу, включают Pu от толкателя и PL от гибочной матрицы. Изгибающий момент вычисляется по формуле (1) [1]:

$$M = Pu \times V + PL \times U \tag{1}$$

Рис 1. Модель системы свободного изгиба.

Отметим, что измерение трехмерных 3-d траекторий с помощью инерциальных измерительных блоков важно также ДЛЯ различных приложений, таких, как крытая пешеходная навигация и счисления координата. Траектория трубы на основе МЭМС датчика обычно реконструируется двойным интегрированием глобального координатного ускорения, при котором накапливаются дрейфы сигналов, приводящие к неограниченному увеличению погрешности. Для отслеживания формовочной трубы при изгибе трубы прикрепляется датчик МЭМС 4 в начале трубы. После этого датчик считывает данные акселерометра и гироскопа и отправляет их в компьютер с помощью беспроводного модуля. Наконец, все данные вычисляются в компьютере и визуализируются, отображая, как труба изменяет форму во время гиба.

2. Математические уравнения для осевого и углового представлений при 3-d вращениях

Преобразование кватерниона в матрицу вращения

Для определения положения твердого тела в трехмерном пространстве обычно существует три варианта: углы Эйлера, кватернионы и матрица косинусов направления (DCM). Они идентифицируют отношения тела с 3 параметрами (Крен, Тангаж, Рыскание), 4 параметрами (q0, q1, q2, q3), и 9 параметров (*C*3*3) соответственно [2,3].

Учитывая кватернион вращения $q = q_0, q_1, q_2, q_3$, соответствующая матрица вращения имеет вид:

$$R = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2q_1q_2 - 2q_0q_3 & 2q_1q_3 + 2q_0q_2 \\ 2q_1q_2 + 2q_0q_3 & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2q_2q_3 - 2q_0q_1 \\ 2q_1q_3 - 2q_0q_2 & 2q_2q_3 + 2q_0q_1 & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$
(2)

или:

$$R = \begin{bmatrix} 1 - 2q_2^2 - 2q_3^2 & 2q_1q_2 - 2q_0q_3 & 2q_1q_3 + 2q_0q_2 \\ 2q_1q_2 + 2q_0q_3 & 1 - q_2^2 - q_3^2 & 2q_2q_3 - 2q_0q_1 \\ 2q_1q_3 - 2q_0q_2 & 2q_2q_3 + 2q_0q_1 & 1 - 2q_2^2 - 2q_3^2 \end{bmatrix}$$
(3)

Оба метода работают для всех допустимых кватернионов единичного вращения, включая тождественный кватернион.

Учитывая матрицу вращения R:

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
(4)

Следующие уравнения показывают, как преобразовать кватернионы в углы Эйлера:

Крен
$$= u = tan^{-1} \left(\frac{2(q_0q_1+q_2q_3)}{q_0^2-q_1^2-q_2^2+q_3^2} \right) = atan2[2(q_0q_1+q_2q_3), q_0^2-q_1^2-q_2^2+q_3^2]$$

(5)
Тангаж $= v = sin^{-1}(2(q_0q_2+q_1q_2)) = asin[2(q_0q_2+q_1q_3)]$
(6)
Рыскание $= w = tan^{-1} \left(\frac{2(q_0q_3+q_1q_2)}{q_0^2+q_1^2-q_2^2+q_3^2} \right) = atan2[2(q_0q_3+q_1q_2), q_0^2+q_1^2-q_2^2+q_3^2]$
(7)

Уравнения 5 - 7 являются общим решением для извлечения углов Эйлера из кватерниона. Но в частном случае, когда угол тангажа равен +90° или -90°, аргументы для 5 и 7 будут равны нулю, для них функция atan2 () не определена. Это называется "блокировка вращения." Так происходит потому, что при углах тангажа +90° и -90° оси вращения рыскания и крена совпадают друг с другом в мировой системе координат и, следовательно, производят одинаковый эффект. Это означает, что однозначного решения не существует: любая ориентация может быть описана с помощью бесконечного числа комбинаций углов рыскания и крена. Чтобы справиться с условием

блокировки карданного подвеса, нужно сначала использовать уравнение 6, чтобы определить, является ли угол тангажа $+\pi/2$ или $-\pi/2$ радианами. Затем устанавливается крен на ноль, а рыскание по следующей схеме [4]:

Если	Тангаж =	Если	Тангаж =
$+\frac{\pi}{2}$ (в радианах)		$-\frac{\pi}{2}$ (в радианах)	
Крен = 0		Крен = 0	
Рыскание = $-2atan2(q_1, q_0)$		Рыскание = $2atan2(q_1, q_0)$	

С помощью двойного интегрирования можно получить сигналы смещения из сигналов ускорения. Однако прямое интегрирование по сигналам ускорения вызовет нереалистичный сдвиг в сигналах скорости и смещения. Причины сдвигов скоростей и перемещений, полученных путем интегрирования сигналов ускорения, можно описать как смещение в ускорениях, случайный шум в ускорениях и т. д. Разумно предположить, что смещение является интегралом скорости, которая, в свою очередь, является интегралом ускорения. Для измеренного ускорения a(t), скорость можно записать в виде:

$$v(t) = v_0 \int_0^t a(\tau) \, d\tau \tag{8}$$

где v_0 обозначает начальную скорость. Смещение, являющееся интегральной величиной v(t), выражается как:

$$s(t) = s_0 + \int_0^t v(\tau) \ d\tau = s_0 + v_0 t + \int_0^t \int_0^\tau a(\tau) \ d\tau \ dt \tag{9}$$

где s_0 представляет начальное смещение. Уравнение (2) показывает, что начальная скорость и начальное смещение должны быть известны для оценки смещения для двойного интегрирования, выполняемого при ускорении. Если начальная скорость и начальное смещение равны нулю, то смещение можно определить с помощью уравнения (2). Однако в

большинстве случаев они не равны нулю, что приведет к ошибке интегрирования смещения [5-6].

Моделирование и визуализация для местоположения датчика с использованием акселерометра и гироскопа в 3-d представлении в среде MATLAB

Реконструкция траектории трубы обычно состоит из трех основных процедур: (1) оценка ориентации, (2) оценка скорости, (3) реконструкция траектории. Оценка ориентации интегрирует сигналы гироскопа для получения угловой ориентации каждого IMU. Оценка скорости сначала использует ориентацию IMU преобразования выше для показаний акселерометра в абсолютное пространство, затем линейные скорости интегрируются вперед во времени на каждой траектории. Наконец, траектория восстанавливается путем интегрирования линейных скоростей [7]. Для измерительной системы использовался Bluetooth-совместимый коммерческий инерциальный сенсорный блок. Размер датчика составляет 37 мм × 46 мм × 12 мм, а весит он 22 г. Датчик был прикреплен к верхней части трубы, и сигналы датчика при изгибе регистрировались. Диапазоны измерения ускорения и угловой скорости были установлены на $\pm 8 \Gamma$ (G = 9.81 м/ c^2) и 2000 °/с соответственно. Необработанные сенсорные данные отбирались на частоте 200 Гц [8].

Рис 3. Скорость каждой оси Х Ү и Z

Рис 4. Данные акселерометра и гироскопа по каждой оси X, Y и Z

от МЭМС-датчика

Рис 5. Результаты данных местоположения датчика с помощью акселерометра и гироскопа по каждой оси X, Y и Z

Рис 6. Результаты данных местоположения датчика в 3-d представлении

3. Заключение

В цели работы не входил полный обзор всех алгоритмов, которые могут быть использованы для оценки положения и ориентации МЭМСдатчика. Интегрируя измерения инерциального датчика, можно получить информацию о положении и ориентации датчика. Однако ошибки в измерениях будут накапливаться, и оценки будут дрейфовать. В связи с этим для получения точных оценок положения и ориентации с помощью инерциальных измерений необходимо использовать дополнительные датчики и дополнительные модели. При этом первой задачей будет оценка использованием инерциальных ориентации С И магнитометрических измерений, предполагающая, что ускорение датчика приблизительно равно нулю. Применение магнитометрических измерений устранит дрейф в направлении курса, в то время как предположение, что ускорение уберет дрейф приблизительно равно нулю, В наклоне. Второй рассматриваемой задачей будет оценка позы С использованием инерциальных и позиционных измерений. При применении инерциальных

измерений оценки положения и ориентации связаны, и поэтому измерения положения также дают информацию об ориентации [9,10]. В данной работе полностью показано использование акселерометра и гироскопа для оценки положения и ориентации датчика, а на основе этого исследования уже можно получить траекторию гиба трубы в 3-d представлении.

Литература

1. Щагин А. В., и др. Система управления пространственным гибом труб. Электронные информационные системы. Номер 1(24), 2020. С. 55-62.

2. Guerrero-Castellanos J. F., et al. Proceedings of the 8th International Conference on Electrical Engineering, Computer Science and Intelligent Systems Design and Engineering Applications (ISDEA ' 12), Sanya, China, January 2012. Pp. 1289-1293.

3. Guerrero-Castellanos J. F., et al. Bounded attitude control of rigid bodies: Real-time experimentation to a quadrotor mini-helicopter. Control Engineering Practice. V. 19. No 8. 2011. Pp. 790-797.

4. Rose D. Rotation Quaternions and How to Use Them. URL: danceswithcode.net/engineeringnotes/quaternions/quaternions.html.

5. Gilbert, Hunter B., Ozkan Celik, and Marcia K. O'Malley. Long-term double integration of acceleration for position sensing and frequency domain system identification. In 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, 2010. Pp. 453-458.

6. Yang J., Li J.B. & Lin G. A simple approach to integration of acceleration data for dynamic soil–structure interaction analysis. Soil dynamics and earthquake engineering. V. 26. No 8. 2006. Pp. 725-734.

 Hao M., Chen K., and Fu C. Smoother-based 3-D foot trajectory estimation using inertial sensors. IEEE Transactions on Biomedical Engineerin. V. 66. No. 12. 2019. Pp. 3534-3542.

8. Kitagawa, N. and Ogihara, N., Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot. Gait & posture. V. 45. 2016. Pp.110-114.

9. Kok M., Hol J.D., & Schön T.B. Using inertial sensors for position and orientation estimation. 2017. arXiv preprint arXiv:1704.06053. URL: arxiv.org/abs/1704.06053.

10. Alandry B., et al. A fully integrated inertial measurement unit: application to attitude and heading determination. IEEE Sensors Journal, vol. 11, no. 11, 2011. Pp. 2852–2860.

References

1. Shchagin A.V., et al. Elektronnye informacionnye sistemy, V. 24. No 1, 2020. Pp. 55-62.

2. Guerrero-Castellanos J. F., et al. Proceedings of the 8th International Conference on Electrical Engineering, Computer Science and Intelligent Systems Design and Engineering Applications (ISDEA ' 12), Sanya, China, January 2012. Pp. 1289-1293.

3. Guerrero-Castellanos J. F., et al. Control Engineering Practice. V. 19. No 8. 2011. Pp. 790-797.

4. Rose D. URL: danceswithcode.net/engineeringnotes/quaternions/ quaternions.html.

5. Gilbert, Hunter B., Ozkan Celik, and Marcia K. O'Malley. 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, 2010. Pp. 453-458.

Yang J., Li J.B. & Lin G. Soil dynamics and earthquake engineering.
 V. 26. No 8. 2006. Pp. 725-734.

7. Hao M., Chen K., and Fu C. IEEE Transactions on Biomedical Engineerin. V. 66. No. 12. 2019. Pp. 3534-3542.

8. Kitagawa, N. and Ogihara, N. Gait & posture. V. 45. 2016. Pp.110-114.

9. Kok M., Hol J.D., & Schön T.B. 2017. arXiv preprint arXiv: 1704.06053. URL: arxiv.org/abs/1704.06053.

10. Alandry B., et al. IEEE Sensors Journal, vol. 11, no. 11, 2011. Pp. 2852–2860.