

Применение метода консенсуса случайной выборки в задаче поиска оси зеркальной симметрии на цифровом изображении

П.А. Грахов

Южный федеральный университет, Ростов-на-Дону

Аннотация: В данной статье описывается и исследуется метод нахождения оси зеркальной симметрии на одноканальных цифровых изображениях с использованием так называемой схемы случайного консенсуса. Статья описывает задачу поиска оси симметрии в терминах задачи оптимизации, приближенное решение которой возможно с помощью схем случайного голосования. Описывается алгоритм решения полученной оптимизационной задачи, дается математическое обоснование предлагаемого метода. Проводится его сравнение с другими существующими методами, показывается зависимость качества предлагаемого метода от входных параметров, приводятся визуализации результатов работы алгоритма.

Ключевые слова: RANSAC, случайный консенсус, зеркальная симметрия, компьютерное зрение, обработка изображений.

Введение

В задачах науки и промышленности возникает потребность автоматического нахождения оси симметрии на изображении либо принятия решения о том, что данное изображение не является симметричным. Подобная проблема возникает, например, в задачах анализа МРТ снимков, где в качестве промежуточного шага требуется определить ось симметрии исследуемого объекта [1], и в задачах материаловедения, где визуальная симметрия исследуемой структуры является одной из ее характеристик [2].

Изображения, получаемые в результате технологической деятельности, в подавляющем большинстве случаев содержат шум и большое количество сторонних объектов, которые затрудняют нахождение оси симметрии методами анализа инвариантов ключевых точек [3, 4]. Большинство работ, демонстрирующих качественные результаты [5], так или иначе опираются на применение некоторого сформулированного критерия с помощью различных схем голосования. Однако, существующие работы нацелены прежде всего на решение исследуемой проблемы в общем виде, без привязки к конкретным задачам промышленности, и не проводят анализ предлагаемых методов с

целью выявить какую-либо возможную зависимость оптимальных параметров предлагаемого алгоритма от условий конкретной решаемой задачи.

В данной работе делается попытка описать алгоритм поиска оси симметрии как решение задачи оптимизации, и дается возможный анализ параметров полученной математической модели. В качестве практического применения на базе предлагаемой модели формулируется и программно реализуется алгоритм нахождения оси симметрии, основанный на методе консенсуса случайной выборки [6] (Random Sample Consensus, далее RANSAC).

Код программной реализации предлагаемого метода доступен на Github: [7].

Поиск оси симметрии как задача оптимизации

Здесь и далее изображение рассматривается как элемент множества матриц $M^{m \times n}(R)$. Подобное соображение мотивировано тем, что в задачах промышленности изображения редко являются многоканальными дискретными фотографиями [8]. К примеру, значения плотности вещества на радиографических снимках не всегда являются целочисленными величинами, в зависимости от используемого формата данных. В то же время ничто не обобщить мешает результаты, представленные ниже, на случай многоканальных изображений, рассматривая множество матриц $M^{m \times n \times p}(R)$

В [9] показано, что если множество точек Q есть отражение множества точек P относительно некоторой оси симметрии, заданной точкой p и вектором нормали u, то существуют такая матрица вращения R_0 и вектор t, что выполняется

$$P_{v} = \{ (E - 2vv^{T})x + 2\langle p_{v}, v \rangle v \mid x \in P \}$$

$$P_{v} = \{ R_{0}x + t \mid x \in Q \}$$
(1)

для любых *v*, p_v . Более того, исходная *u* есть собственный вектор матрицы $(E - 2vv^T)R_0^T$, отвечающий собственному значению -1, с точностью до постоянного коэффициента, а точка $p = \frac{1}{2}(2\langle p_v, v \rangle R_0 v + t)$ лежит на исходной оси отражения. В дальнейшем без потери общности будем считать, что v = (1, 0), а p_v отвечает середине изображения.

Таким образом, если каким-либо образом были найдены коррелирующие области изображений *I* и *J*, полученного из *I* отражением по вертикальной оси, проходящей через середину изображения, мы можем рассматривать их как множества точек Р и Р_v, которые позволяют оценить возможную ось симметрии между участком I и соответствующим ему симметричным образом с помощью формул (1). Введем функцию $g(I,J): M^{k \times k}(R) \times M^{k \times k}(R) \mapsto R$ отражающую некоторую меру сходства (корреляции) между двумя квадратными изображениями размера $k \times k$. Множество таких функций обозначим за Ф_g.

Пусть квадратный участок изображения *I* с центром в точке *x,y* коррелирует (в смысле функции *g*) с квадратным участком с центром в точке *x',y'* изображения $R_{\alpha}[J]$, полученного из *J* путем его поворота относительно центра изображения на угол α . Тогда исходной матрицей вращения будет сама матрица поворота на угол α , и вектор $t = (x - x', y - y') - \frac{1}{2}R_{\alpha}(n,m) + \frac{1}{2}(n,m)$.

Можно предположить, что если для некоторого α будет найдено большое количество пар подобных коррелирующих участков, для которых вектор (*x*-*x*',*y*-*y*') имеет одинаковые значения, то на данном изображении действительно присутствует ось симметрии. При этом мы будем отдавать предпочтение небольшим множествам пар подобных участков с высокими коэффициентами корреляции чем обширным областям с малым значением функции *g*.

Формализуя приведенные выше соображения, задачу поиска оси симметрии можно записать как следующую задачу оптимизации:

$$\sum_{(x,y)\in S} \delta(h(\alpha,t_x,t_y)) \cdot \sum_{(x,y)\in S} h(\alpha,t_x,t_y) \cdot \delta(h(\alpha,t_x,t_y)) \to \max_{S,\alpha,t_x,t_y}$$

$$\delta(x) = \begin{cases} 1, x > \varepsilon_g \\ 0, x \le \varepsilon_g \end{cases} , \qquad (2)$$

$$h(\alpha,t_x,t_y) = g(I_{x,y}^k, (R_\alpha[J])_{x+t_x,y+t_y}^k)$$

где I – исходное изображение, J – его отражение относительно вертикальной оси, проходящей через центр изображения, I_{xy}^{k} – квадратный участок изображения I размера $k \times k$ с центром в точке (x, y), $g \in \Phi_{g}$, $\varepsilon_{g} \in R$ Максимизация проводится по всем возможным множествам координат точек изображения I, $S \subset \{(x, y) | x \in [0, n], y \in [0, m]\}$, и всем возможным углам α из некоторого заданного множества Σ_{α} .

Если максимум, найденный при решении задачи (1), слишком мал, то это может говорить об отсутствии оси симметрии на изображении. Для подобного случая можно ввести минимальный порог ε_{Σ} , при непрохождении которого делается вывод об осутствии оси симметрии у данного изображения.

Коэффициент k отражает наши представления о возможном размере симметричной области. Если изображение содержит крупные симметричные объекты, то k может принимать значения равные половине ширины или высоты исследуемого изображения. В ситуациях, когда симметричный участок относительно мал, значение k может быть в районе 20-30 пикселей.

Функция g в общем случае является простой сверткой двух изображений, она формализует интуитивное представление о «схожести» изображений в условиях некоторой проблемы. Порог ε_g прямо связан с определением этой функции и переводит ее непрерывное значение в дискретное, как это делается при решении проблем нечеткой логики [10].

Поскольку решение данной задачи аналитическими методами затруднено даже при конкретном виде функции g, а прямой перебор всех возможных множеств S является вычислительно неэффективным методом решения, предлагается для решения поставленной задачи использовать методы случайной выборки, к примеру RANSAC, выбирая на каждой итерации некоторое ограниченное количество элементов множества S.

Предлагаемый алгоритм решения задачи (2)

На вход алгоритму подается исходное изображение *I*, функция измерения сходства $g \in \Phi_g$, размер квадратного участка *k*, множество возможных углов Σ_{α} , пороги ε_g , ε_{Σ} , число *N*. Предлагаемый алгоритм состоит в следующем:

- 1. Данное изображение *I* отражается относительно вертикальной оси, проходящей через центр изображения. Полученное изображение обозначим как *J*.
- 2. Для каждого $\alpha \in \Sigma_{\alpha}$:
 - 2.1.Выбирается N случайных элементов множества S. Для каждой выбранной точки x, y находится максимум функции g(I^k_{x,y},(R_α[J])^k_{x',y'}) по x',y', при этом данные значения могут выбираться случайным образом из заданного интервала допустимых значений.
 - 2.2. Для тех точек, для которых максимум $g(I_{x,y}^{k}, (R_{\alpha}[J])_{x',y'}^{k})$ превосходит заданный порог ε_{g} , вычисляются значения $t_{x} = x x'$, $t_{y} = y y'$, затем вычисляются значения $\omega_{t} = \sum_{t_{x},t_{y}} g(I_{x,y}^{k}, (R_{\alpha}[J])_{x+t_{x},y+t_{y}}^{k})$ где суммирование ведется по повторяющимся t_{x} и t_{x} . Количество повторяющихся t_{x} и t_{y} для каждой пары x, y сохраняется как η_{xy} .

- 2.3. Ищется значение $\omega_{\alpha} = \max \omega_t$, соответствующие ему значения t_x , t_y и η_{xy} запоминаются как $t_{\alpha x}$, $t_{\alpha y}$ и η_{α}
- 3. Ищется значение α = arg max(ω_α · η_α), соответствующие ему значения t_{ax}, t_{ay}, как и само α, будут результатами работы алгоритма, если ω_αη_α > ε_Σ.
 В противном случае делается вывод об отсутствии оси зеркальной симметрии.

Пункт 2 предлагаемого алгоритма может быть легко распараллелен (как и любой другой метод, основанный на RANSAC [11]) за счет дополнительных затрат памяти, поскольку итерации по α не зависят от результатов друг друга. Полученные при каждом α значения $t_{\alpha x}$, $t_{\alpha y}$, η_{α} , ω_{α} могут храниться в общей памяти и по окончании вычислений к ним может без ограничений применяться пункт 3.

Результаты вычислительных экспериментов

Было проведено сравнение предлагаемого метода с известными методами нахождения оси зеркальной симметрии. Вычислительный эксперимент проводился использованием изображений ИЗ базы, С распространяемой New York University (NYU) [12]. Данная база содержит 176 цветных симметричных изображений с информацией о расположении отрезка симмерии для каждого из них, что позволяет формально оценить качество предлагаемого метода.

Качество оценивалось с позиций задачи классификации, как это описано в [13]. Пусть φ есть угол между настоящим и оцененным векторами нормали оси симметрии, L_{GT} – длина истинного отрезка симметрии, Δ – расстояние между истинным и оцененными центрами осей симметрии. Тогда считается, что предсказание модели верно, если выполняются оба условия $|\phi| \leq \frac{\pi}{18}$ и $\Delta < \frac{1}{5}L_{GT}$. Точность алгоритма (trueness) определялась как количество

изображений, для которых была верно предсказана ось симметрии, к общему количеству симметричных изображений в базе. Релевантность (precision) определялась как количество верных предсказаний к общему количеству предсказаний о наличии оси симметрии [14]. Все изображения были сведены к их однокональным черно-белым представлениям перед экспериментом. Результаты эксперимента представлены в таблице 1.

Таблица №1

	Cicconet	Cicconet	Loy	Предлагаемый
	(2017)	(2016)	(2006)	метод
Точность	0.92	0.76	0.67	0.84
Релевантность	0.94	0.81	0.73	0.92

Сравнение методов нахождения оси симметрии

При оценке предлагаемого метода использовались следующие параметры: k = 50, N = 200, $\varepsilon_g = 0.75$, $\varepsilon_{\Sigma} = 3$, $\Sigma_{\alpha} = \{0^{\circ}, 5^{\circ}, 10^{\circ}, ..., 355^{\circ}\}$, а функция *g* определялась как [15]:

$$g(I,J) = \frac{\sum_{x,y} I_{x,y} J_{x,y}}{\sqrt{\sum_{x,y} I_{x,y}^2 \sum_{x,y} J_{x,y}^2}}$$

Эта функция используется в задачах поиска шаблона (template matching).

Промежуточные результаты эксперимента для предлагаемого метода при различных k, N, ε_{Σ} и при тех же Σ_{α} , ε_{g} , как они определены выше, представлены в таблице 2

Таблица №2

Сравнение результатов эксперимента при различных $k, N, \varepsilon_{\Sigma}$

k	N	\mathcal{E}_{\varSigma}	Точность	Релевантность
20	200	3	0.72	0.74
20	200	5	0.67	0.75
20	400	3	0.79	0.78
20	400	5	0.74	0.81
50	200	3	0.84	0.92
50	200	5	0.81	0.93
50	400	3	0.83	0.89
50	400	5	0.79	0.91

(Предлагаемый метод)

Визуальная демонстрация предлагаемого метода представлена на рисунках 1 и 2.

Рис. 1. – Визуальная демонстрация работы предлагаемого метода. Предсказание для левого изображения выполнялось при *k* = 50, для правого – при *k* = 20. Изображения взяты из базы NYU.

Рис. 2. – Визуальная демонстрация предсказанной оси симметрии на ТЭМ снимке хламидомонады, *k* = 20. Источник изображения: [16].

Вывод

Предлагаемый метод находится на уровне лучших из текущих решений при сравнении на общей базе различных изображений, рис. 1 и 2 демонстрируют, что адаптацией параметров алгоритма под узкий класс изображений можно добиваться качественных результатов. Данный метод позволяет распараллеливание в силу использования RANSAC и может быть использован в различных задачах науки и техники при небольших адапатациях своих параметров.

Литература

- Liu X. et al. Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology. URL: arxiv.org/abs/2101.06775
- Moeck P. Advances in Crystallographic Image Processing for Scanning Probe Microscop. URL: arxiv.org/abs/2011.13102.
- Loy G., Eklundh J.-O. Detecting Symmetry and Symmetric Constellations of Features.Computer Vision – ECCV 2006. ECCV 2006 Lecture Notes in Computer Science. Berlin: Springer Verlag, 2006. pp. 508–521.

- Kondra S., Petrosino A., Iodice S. Multi-Scale Kernel Operators for Reflection and Rotation Symmetry: Further Achievements.CVPR 2013.
 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 217–222.
- 5. Cicconet M. et al. A convolutional approach to reflection symmetr. URL: arxiv.org/abs/1609.05257.
- Fischler M.A., Bolles R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM. 1984. Vol. 24, №6, pp. 381– 395.
- 7. Symmetry Experiments. URL: github.com/holmuk/symmetry-experiments
- 8. Gonzalez R.C., Woods R.E. Digital Image Processing (3rd edition). Prentice-Hall, 2006, pp. 29–47.
- Cicconet M., Hildebrand D. G. C., Elliott H. Finding Mirror Symmetry via Registration. URL: arxiv.org/abs/1611.05971.
- Novák V., Perfilieva I. The Principles of Fuzzy Logic: Its Mathematical and Computational Aspects. Lectures on Soft Computing and Fuzzy Logic. Advances in Soft Computing. Berlin: Springer Verlag, 2001. Vol. 11, pp. 189–237.
- Hidalgo-Paniagua A. et al. A Comparative Study of Parallel RANSAC Implementations in 3D Space. International Journal of Parallel Programming. 2015. Vol. 43, pp. 703–720.
- 12. NYU Symmetry Database. New York University URL: symmetry.cs.nyu.edu.
- Liu J. et al. Symmetry Detection from Real World Images Competition 2013: Summary and Results. CVPR 2013. 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 200–205.

- 14. Accuracy (trueness and precision) of measurement methods and results Part 1: General principles and definitions. International Organization for
 Standardization URL: iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en.
- Bradski G. The OpenCV Library. Dr. Dobb's Journal of Software Tools. V.
 25. 2000. Pp. 120-125.
- George E.P. CIL: 37260, Chlamydomonas reinhardtii. CIL. Dataset. Cell Image Library. 2012. URL: cellimagelibrary.org/images/37260.

References

- 1. Liu X. et al. Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology. URL: arxiv.org/abs/2101.06775.
- Moeck P. Advances in Crystallographic Image Processing for Scanning Probe Microscopy. URL: arxiv.org/abs/2011.13102.
- Loy G., Eklundh J.-O. Computer Vision ECCV 2006. ECCV 2006 Lecture Notes in Computer Science. Berlin: Springer Verlag, 2006. pp. 508–521.
- Kondra S., Petrosino A., Iodice S. CVPR 2013. 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 217–222.
- 5. Cicconet M. et al. A convolutional approach to reflection symmetry. URL: arxiv.org/abs/1609.05257.
- Fischler M.A., Bolles R.C. Communications of the ACM. 1984. Vol. 24, №6, pp. 381–395.
- 7. Symmetry Experiments. URL: github.com/holmuk/symmetry-experiments.
- B. Gonzalez R.C., Woods R.E. Digital Image Processing (3rd edition). Prentice-Hall, 2006, pp. 29–47.
- Cicconet M., Hildebrand D. G. C., Elliott H. Finding Mirror Symmetry via Registration. URL: arxiv.org/abs/1611.05971.

- Novák V., Perfilieva I. Lectures on Soft Computing and Fuzzy Logic. Advances in Soft Computing. Berlin: Springer Verlag, 2001. Vol. 11, pp 189–237.
- Hidalgo-Paniagua A. et al. International Journal of Parallel Programming.
 2015. Vol. 43, pp. 703–720.
- 12. NYU Symmetry Database. New York University URL: symmetry.cs.nyu.edu.
- 13. Liu J. et al. CVPR 2013. 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 200–205.
- 14. Accuracy (trueness and precision) of measurement methods and results Part 1: General principles and definitions. International Organization for
 Standardization URL: iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en.
- 15. Bradski G. Dr. Dobb's Journal of Software Tools. V. 25. 2000. Pp. 120-125.
- George E.P. CIL: 37260, Chlamydomonas reinhardtii. CIL. Dataset. Cell Image Library. 2012. URL: cellimagelibrary.org/images/37260.