

Исследование физико-механических и волновых характеристик

пористо-волокнистых материалов

М.Д. Васильев¹, Ю.В. Маркина², Е.И. Шмагин², А.Р. Гайнутдинов², В.Н. Коваленко²

¹Научно-исследовательский институт строительной физики, Москва ²Национальный исследовательский Московский государственный строительный университет, Москва

Аннотация: Настоящая статья представляет исследование физико-механических характеристик и волновых параметров пористо-волокнистых материалов (ПВМ), используемых в обеспечении звукоизоляции и виброзащиты зданий и сооружений. В работе выполнена классификация пористо-волокнистых материалов по исходному сырью и различной степени жёсткости, представлены основные физико-механические характеристики и волновые параметры ПВМ, и теоретические методы их определения. Представлены результаты лабораторных измерений физико-механических и волновых характеристик образцов ПВМ (стеклянной и каменной основы различной плотности и толщины). Проведено обширное экспериментальное исследование с целью оценить основные взаимосвязи между материалом образца, его плотностью, исходным сырьем, структурой, размером и его акустическими, физико-механическими и волновыми характеристиками. Результаты исследования имеют важное практическое значение для разработки акустически эффективных строительных материалов и их оптимального применения в строительстве и инженерных системах.

Ключевые слова: акустические измерения, акустическое проектирование, строительные материалы, характеристики пористо-волокнистых материалов, звукоизоляция, виброзащита зданий и сооружений

Введение

В современном строительстве инженерных И решениях, обеспечивающих комфортное проживание, жизнедеятельность человека и зданий, особую роль играют пористо-волокнистые функциональность материалы (ПBM), которые широко применяются для обеспечения эффективной звукоизоляции и виброзащиты зданий и сооружений [1]. В связи с растущей важностью улучшения акустических и вибрационных характеристик строительных конструкций, исследование физиковолновых свойств пористо-волокнистых материалов механических И приобретает особое значение [2].

Целью данной статьи является освещение результатов исследования физико-механических И волновых характеристик ΠBM, ИХ анализ предоставляет ценные сведения для оптимизации их применения в области звукоизоляции и виброзащиты. Путем обширного экспериментального исследования выявлены взаимосвязи между структурой материалов, их физико-механическими свойствами и их акустической эффективностью. Результаты данного исследования могут служить ценным материалом для инженеров, проектировщиков и материаловедов, стремящихся создать более совершенные и эффективные системы звукоизоляции и виброзащиты [3]. Таким образом, настоящая статья представляет собой важный вклад в область разработки и применения изоляционных пористо-волокнистых материалов с улучшенными характеристиками.

Основные физико-механические и волновые характеристики пористоволокнистых материалов

Пористо-волокнистые материалы представляют собой структурную двухфазную среду [4], состоящую из скелета (волокон) и пор - промежутков между волокнами, заполненных воздухом. Выделяют следующие ПВМ по исходному сырью:

1) Минеральные: волокна из асбеста, стекловата, войлок из битумной минеральной ваты, базальтовая вата.

 Синтетические: волокна из полиэфира, полипропилена, полиэтилентерефталата.

3) Природные: волокна из шерсти, хлопка, чайного листа, джута, древесины, льна, целлюлозы.

4) Металлические: волокна из нержавеющей стали.

5) Гибридные: на основе полимерных, металлических и керамических материалов.

ПВМ выделяют по различной степени жёсткости [4]:

1) Материалы «мягкой» жесткости производят на основе минеральной ваты или стекловолокна с минимальным содержанием синтетического связующего (до 3% по массе) или вовсе без него. К ним относятся изделия объёмной массой до 70 кг/м³, у которых коэффициент звукопоглощения α_s (КЗП) на средних частотах (250-1000 Гц) составляет от 0,7 до 0,85.

2) К полужёстким материалам относятся минераловатные или стекловолокнистые плиты с объёмной массой от 80 до 130 кг/м³ при содержании синтетического связующего от 10 до 15% по массе. КЗП α_s полужёстких материалов на средних частотах составляет 0,65-0,75. В эту же группу входят звукопоглощающие плиты из пористых пластмасс, имеющие ячеистое строение (пенополиуретан, полистирольный пенопласт и др.).

3) Твёрдые материалы волокнистого строения изготовляются в виде плит на основе гранулированной или суспензированной минеральной ваты и коллоидного связующего, объёмная масса 300-400 кг/м³, КЗП α_s на средних частотах 0,6-0,7. Применяются также звукопоглощающие плиты, в которых древесная шерсть связана цементным раствором.

По своим физико-механическим характеристикам ПВМ относятся к упруго-вязким материалам, физико-механические и волновые свойства которых определяются, главным образом: плотностью р; пористостью П; динамическим модулем упругости E_{d} ; динамической жесткостью S; коэффициентом относительного сжатия e_{d} ; пределом прочности при изгибе $\sigma_{изг}$ и сжатии $\sigma_{cж}$; удельным R_s и обычным сопротивлением продуванию потоком воздуха R; волновым сопротивлением W; акустическим импедансом Z_a и удельным сопротивлением Z_s ; индексом звукопоглощения α_w ; реверберационным α_s , нормальным α_n и фактическим коэффициентом звукопоглощения α_p [5].

Теория определения основных физико-механических и волновых характеристик пористо-волокнистых материалов

Главным образом, акустическая эффективность пористо-волокнистых материалов определяется их физико-механическими параметрами: динамической жесткостью S и комплексным динамическим модулем упругости E_д (объемный модуль) [Па] по формуле (1) [6]:

$$E_{\rm g} = E_0 + E_{jw} \cdot \eta \tag{1}$$

где E_0 – действительная часть, [Па]; E_{jw} – модуль потерь, [Па]; η – коэффициент потерь.

Динамическая жесткость S [Па/м] находится по формуле (2) [6]:

$$S = E_{\mu}/\delta \tag{2}$$

где δ – толщина слоя, [м].

Динамический модуль упругости является частотно независимой характеристикой. В пористо-волокнистой материале с упругим скелетом распространяются две независимые волны с постоянными распределения, они являются связанными, т.е. бегут одновременно и по скелету и по воздуху в двух направлениях [7]. Динамический модуль упругости E_{d} материала в основном определяется модулем воздуха E_{b} и практически не зависит от частоты. При плотности свыше $\rho > 100$ кг/м³ модуль скелета E_{ck} возрастает и оказывает существенное влияние на величину модуля упругости E_{d} [Па], описываемого формулой (3) [6]:

$$E_{g} = E_{cK} + E_{B}$$
(3)

где E_{ск} – динамический модуль скелета, [Па]; E_в – то же воздуха, [Па].

Также стоит отметить, что при этом динамический модуль упругости проявляет частотно-зависимый характер [6]. Фактическая динамическая жесткость S [H/m³] слоя материала находится по формуле (4) [6]:

$$S = S_k + S_B[1 - R_E(\varphi)] \tag{4}$$

где $S_{c\kappa}$ – динамическая жесткость скелета материала [H/м³]; S_e – то же воздуха в порах материала, [H/м³]; $R_E(\varphi)$ – учитывает влияние сопротивления продувания на динамическую жесткость.

На низких частотах динамическая жесткость S_B [H/м³] описывается формулой (5) [6]:

$$S_B = \frac{1}{\delta} \cdot \frac{p_0 \cdot C_0^2}{h \cdot \gamma} \tag{5}$$

где γ – показатель адиабаты; p_0 – плотность воздуха, [кг/м³]; C_0 – адиабатическая скорость звука в воздухе, [м/с].

Между физико-механическими и волновыми параметрами имеет место постоянная, обратная связь [8]. Динамическую жесткость S слоя материала и его коэффициент потерь определяют через волновое сопротивление и постоянную распространения из выражения (6), [H/м³] [10]:

$$S = \frac{k(R_a \cdot \beta + X_i \cdot a)}{d(a^2 + \beta^2)} \tag{6}$$

где k – волновое число, [см⁻¹]; R_a и X_i – действительная и мнимая составляющие волнового сопротивления; i – мнимая единица; d – диаметр волокна, [мм]; α – показатель затухания амплитуды давления звуковой волны в среде волокнистого материала, [см–1]; β – волновое число, [см⁻¹].

Другим определяющим волновым параметром материала является волновое сопротивление среды, это значение принимает и акустический импеданс Z_a для плоской волны, и описывается формулой (7), [Па·с/м³] [9]:

$$Z_a = R_a - iX_i \tag{7}$$

где R_a и X_i – действительная и мнимая составляющие акустического импеданса, *i* – мнимая единица.

Кроме акустического Z_a, применяют также удельный акустический Z_s импеданс, которые связаны между собой зависимостью (8), [Па·с/м] [10]:

$$Z_s = Z_a / S \tag{8}$$

где S – единичная площадь, [м²].

Также стоит отметить, что при прохождении звуковой волны через пористо-волокнистый материал происходит потеря акустической энергии [9].

Теория определения основных физико-механических и волновых характеристик пористо-волокнистых материалов

Для изучения физико-механических параметров ПВМ, в лабораториях НИИСФ РААСН были проведены лабораторные измерения 12 образцов ПВМ (стеклянной и каменной основы толщиной 50 мм и различной плотности). Результаты внесем в таблицу 1.

Таблица 1

Результаты лабораторных испытаний основных физико-механических параметров 12 образцов ПВМ (толщиной 50 мм).

Материал образца (50 мм): СК – стеклоплита, БП – базальтовая плита	Длина волокна, d ·10 ⁻⁴ [cм]	Коэф. воздухопрониц., <i>i</i> , кг/[м·ч·(Па) ^{1,25}]	Сопротивление воздухопрон., <i>R.</i> , [m ² ·ч·(Па) ^{1,25} /кг]	Сопр. продув. потоком воздуха, $R \cdot 10^3$, [(Па $\cdot c$)/ M^3]	Удельное сопр. потоку, <i>r</i> ·10 ³ , [(Па·с)/м ²]	Воздухопрониц., <i>l</i> · 10 ⁻⁶ , [м ³ /(Па·м·с)]	Прочность при раст., <i>о</i> _i , [кПа]	Дин. модуль упр-ти <i>Е</i> ₀ , [МПа], при нагрузке 2 и 5 кПа	Коэффициент относит-го сжатия e_{o} [H/m ²], при 2000/5000 н	Класс пожарной опасности
СК, 16 кг/м ³	1	0,279	0,761	14,5	11,3	88,6	8,61	0,16/0,26	0,69/0,8	8 KM0
СК, 20 кг/м ³	2	0,290	0,750	20,4	15,9	63,0	3,42	0,16/0,34	0,65/0,7	9 KM0
СК, 25 кг/м ³	2	0,196	0,908	27,0	21,1	47,5	3,15	0,17/0,42	0,60/0,7	4 KM0
СК, 30 кг/м ³	2	0,160	0,840	30,6	23,9	41,9	3,33	0,21/0,58	0,51/0,6	6KM0
БП, 32 кг/м ³	4	0,186	0,510	40,1	17,0	58,7	4,00	0,21/0,58	0,49/0,6	3 KM0
БП, 35 кг/м ³	4	0,144	0,690	52,1	20,8	48,0	6,00	0,23/0,59	0,47/0,6	1 KM0
БП, 40 кг/м ³	4	0,142	0,710	53,0	21,2	45,9	7,23	0,28/0,72	0,44/0,5	8 KM0
БП, 47 кг/м ³	8	0,140	0,720	53,9	21,5	46,4	8,04	0,30/0,83	0,37/0,4	7KM0
БП, 60 кг/м ³	8	0,127	1,430	70,8	28,3	35,3	13,15	0,41/0,86	0,31/0,4	6KM0
БП, 70 кг/м ³	8	0,109	0,92	104,3	41,7	23,5	23,14	0,43/0,88	0,30/0,4	4KM0
БП, 80 кг/м ³	8	0,108	0,93	109,2	43,6	22,3	81,7	0,49/0,89	0,19/0,3	5 KM0
БП, 100 кг/м ³	8	0,111	0,93	107,2	42,9	22,3	148,9	0,61/0,90	0,15/0,2	8KM0

© Электронный научный журнал «Инженерный вестник Дона», 2007–2023

При анализе полученных данных испытанных образцов, установлено, что коэффициент воздухопроницаемости зависит от плотности изделий из стеклянной и каменной ваты – чем выше плотность, тем меньше коэффициент воздухопроницаемости (с асимптотическим стремлением значения коэффициента воздухопроницаемости к 0,05 [кг/(м·ч·Па^{1,25})] для стеклянной ваты и к 0,1 [кг/(м·ч·Па)] для каменной ваты при стремлении плотности материалов к максимальным значениям). Следовательно, имеется и обратная зависимость для сопротивления воздухопроницанию образцов – тем чем выше плотность изделия, больше сопротивление воздухопроницанию.

На рисунке 1 представлен график зависимости воздухопроницаемости, *l*, [м³/(Па·м·с)], от плотности изделий из стеклянной и каменной ваты, по которому можно судить о близкой по характеру зависимости воздухопроницаемости от плотности ПВМ из стекленной и каменной ваты.

Рис. 1. – Зависимость воздухопроницаемости ПВМ от плотности.

Исходя из данных, представленных в таблице 1, в соответствии с методикой, разработанной в НИИСФ [10], определим волновые параметры указанных пористо-волокнистых материалов и представим их в таблице 2.

Таблица 2

Образец (50 мм)	1 волокна $d \cdot 10^{-4}$ [см]	Индекс ЗП а _w	Частота <i>f</i> , [Гц]	Q	Y	x	A_{I}	A_2	R _a	X _i	а, [см ⁻¹]	<i>β,</i> [см ⁻¹]
1	2	3	4	5	6	7	8	9	10	11	12	13
M^{3}			125	4.44	0.15	0.05	0.08	0.03	5.44	0.38	0.03	0.13
cr/j			250	3.16	0.21	0.11	0.15	0.33	4.16	0.48	0.06	0.23
6 к	1	0.0	500	2.22	0.30	0.24	0.25	0.47	3.22	0.56	0.11	0.38
, 1	1	0,0	1000	1.58	0.42	0.48	0.37	0.79	2.58	0.59	0.23	0.69
K			2000	1.11	0.60	0.93	0.51	1.40	2.11	0.57	0.45	1.32
\cup			4000	0.8	0.85	1.63	0.62	0.75	1.80	0.49	0.60	1.73
M_{3}			125	2.26	0.21	0.36	0.32	0.03	3.26	0.72	0.03	0.07
CL/		0.9	250	1.6	0.30	0.72	0.45	0.04	2.60	0.72	0.05	0.12
1 O I	2		500	1.13	0.42	1.34	0.56	0.07	2.13	0.63	0.08	0.20
5	2	0,7	1000	0.8	0.60	2.34	0.68	0.12	1.80	0.55	0.13	0.34
K			2000	0.56	0.85	3.87	0.82	0.06	1.56	0.46	0.19	0.57
			4000	0.4	1.20	6.07	0.88	0.02	1.40	0.35	0.28	1.01
M ³		0,85	125	2.51	0.21	0.44	0.36	0.03	3.51	0.89	0.03	0.08
KL/			250	1.74	0.30	0.91	0.50	0.04	2.74	0.88	0.05	0.13
5	2		500	1.26	0.42	1.66	0.60	0.06	2.26	0.76	0.09	0.21
0	-		1000	0.89	0.60	2.89	0.74	0.11	1.89	0.66	0.15	0.36
K			2000	0.61	0.85	4.80	0.85	0.06	1.61	0.52	0.21	0.59
0			4000	0.44	1.20	7.47	0.91	0.02	1.44	0.40	0.31	1.04
M_{3}		0,85	125	2.8	0.21	0.52	0.39	0.02	3.80	1.09	0.03	0.09
\mathbf{C}/\mathbf{C}			250	2	0.30	1.05	0.51	0.03	3.00	1.02	0.06	0.14
0 1	2		500	1.4	0.42	1.98	0.64	0.05	2.40	0.90	0.10	0.22
, 3	-		1000	1	0.60	3.42	0.78	0.09	2.00	0.78	0.17	0.38
X			2000	0.7	0.85	5.62	0.87	0.05	1.70	0.61	0.24	0.62
\cup			4000	0.5	1.20	8.76	0.92	0.01	1.50	0.46	0.35	1.08
M.3			125	0.88	0.30	2.66	0.72	0.03	1.88	0.63	0.02	0.04
ыП, 32 кг/л +		250	0.63	0.42	4.26	0.84	0.05	1.63	0.53	0.03	0.07	
	4	0,9	500	0.44	0.60	6.60	0.89	0.09	1.44	0.39	0.04	0.13
	-		1000	0.31	0.85	9.91	0.94	0.05	1.31	0.29	0.06	0.24
			2000	0.22	1.20	14.60	0.99	0.01	1.22	0.22	0.08	0.44
	Р		4000	0.15	1.70	21.29	1.04	0.00	1.15	0.16	0.11	0.83
M.3	M ³		125	0.9	0.30	2.94	0.74	0.03	1.90	0.67	0.02	0.04
5 KT/h			250	0.64	0.42	4.67	0.85	0.05	1.64	0.54	0.03	0.08
	Δ	00	500	0.45	0.60	7.19	0.90	0.09	1.45	0.41	0.04	0.13
3	-	0,7	1000	0.32	0.85	10.74	0.95	0.05	1.32	0.30	0.06	0.24
Π			2000	0.23	1.20	15.75	1.00	0.01	1.23	0.23	0.08	0.44
P		4000	0.15	1.70	22.99	1.05	0.00	1.15	0.16	0.11	0.83	

Волновые параметры образцов пористо-волокнистых материалов.

-		1	1	1	1	1		1		1	1	1
1	2	3	4	5	6	7	8	9	10	11	12	13
M ³			125	0.93	0.30	3.39	0.78	0.03	1.93	0.73	0.02	0.04
CL/			250	0.66	0.42	5.34	0.86	0.04	1.66	0.57	0.03	0.08
0 F	40 ¥	0.0	500	0.46	0.60	8.15	0.92	0.08	1.46	0.42	0.04	0.13
4		0,7	1000	0.33	0.85	12.08	0.96	0.04	1.33	0.32	0.06	0.24
Ц			2000	0.23	1.20	17.68	1.01	0.01	1.23	0.23	0.08	0.44
Щ			4000	0.16	1.70	25.60	1.06	0.00	1.16	0.17	0.12	0.84
и3			125	1	0.42	8.46	0.92	0.04	2.00	1.00	0.00	0.05
T/I			250	0.7	0.60	13.14	0.98	0.06	1.70	0.70	0.01	0.08
7 K	0	0.0	500	0.5	0.85	19.71	1.03	0.03	1.50	0.50	0.01	0.14
4	0	0,9	1000	0.35	1.20	29.04	1.07	0.01	1.35	0.35	0.01	0.24
Π,			2000	0.25	1.70	42.14	1.12	0.00	1.25	0.25	0.02	0.45
р			4000	0.17	2.40	60.77	1.17	0.00	1.17	0.17	0.02	0.84
Λ^3			125	1.21	0.42	9.64	0.94	0.03	2.21	1.21	0.00	0.05
L/N		1.0	250	0.72	0.60	15.44	1.00	0.05	1.72	0.72	0.01	0.08
) K	X 0		500	0.64	0.85	22.24	1.04	0.03	1.64	0.64	0.01	0.15
БП, 6(1,0	1000	0.52	1.20	32.31	1.09	0.01	1.52	0.52	0.02	0.27	
		2000	0.38	1.70	47.06	1.13	0.00	1.38	0.38	0.02	0.50	
		4000	0.26	2.40	68.14	1.18	0.00	1.26	0.26	0.03	0.91	
\mathbf{I}^3		0,9	125	1.32	0.42	10.97	0.95	0.03	2.32	1.32	0.00	0.05
I/N			250	0.97	0.60	16.72	1.01	0.05	1.97	0.97	0.01	0.09
) K	0		500	0.73	0.85	24.78	1.05	0.03	1.73	0.73	0.01	0.16
7(8		1000	0.46	1.20	36.76	1.10	0.01	1.46	0.46	0.01	0.26
П,			2000	0.39	1.70	52.58	1.15	0.00	1.39	0.39	0.02	0.50
P			4000	0.28	2.40	75.63	1.19	0.00	1.28	0.28	0.04	0.92
13			125	1.63	0.42	11 73	0.96	0.02	2.63	1.63	0.01	0.06
L/N			250	1 22	0.60	17.92	1.01	0.02	2.22	1.00	0.01	0.00
) K	0		500	0.81	0.85	27.15	1.07	0.02	1 81	0.81	0.01	0.16
	8		1000	0.54	1 20	39.95	1 11	0.01	1 54	0.54	0.02	0.28
Ц,			2000	0.42	1 70	57 41	1 16	0.00	1 42	0.21	0.02	0.51
Pl			4000	0.12	240	87.41	1.10	0.00	1 30	0.30	0.03	0.94
БП, 100 кг/м ³ 8		125	1.88	0.42	13.90	1.20	0.00	2.88	1.88	0.01	0.06	
			$\frac{120}{250}$	1 34	0.42	21 19	1.27 1.46	0.09	2.00 2.34	1 34	0.01	0.00
		1,0	500	0.94	0.85	31 47	1.40	0.05	1 94	0.94	0.01	0.11
	8		1000	0.54	1 20	45.80	1 13	0.05	1.57	0.54	0.01	0.30
			2000	0.07	1.20 1 70	<u></u>	1 18	0.01	1.07	0.07	0.02	0.50
			4000	0.47	$\frac{1.70}{2.40}$	94 /0	1.10 1.77	0.00	1 33	0.47	0.03	0.55
L	Γπρ	0 –	<u>ттооо</u> безраг	<u>Nenu</u>	<u>עדיען</u> אם רדי	174.42 NVKTVr	1.22 1190	<u>vanar</u>	<u>1.33</u> ге п ист	лка. лка.	V 17	<u>v</u>
	тдс	- Y	uuspa	мерна	ил СГ	μλυτιλί	лая	ларак	сорист	rina,	I M	Λ -

действительная и мнимая компоненты удельного импеданса Z_c [Па·с/м]; A_1 и A_2 – предельно допустимые относительные погрешности акустического импеданса Z_c и Z_a соответственно; R_a и X_i – действительная и мнимая составляющие акустического импеданса Z_a [Па·с/м³]; α – показатель затухания амплитуды давления звуковой волны в среде волокнистого материала [см⁻¹]; β – волновое число [см⁻¹].

Из сравнения результатов волновых параметров пористо-волокнистых материалов, можно сделать вывод, что влияние податливости скелета среды материала проявляется в уменьшении показателя затухания амплитуды звукового давления плоской волны, а также абсолютного значения мнимой составляющей волнового сопротивления. Волновое сопротивление W увеличивается с увеличением плотности материала, однако уменьшается с увеличением частоты, в то время как постоянная распространения γ растет с увеличением частоты и плотности материала. На рисунках 2 – 3 построим графики зависимости и отобразим полученные результаты волновых параметров Z_a и γ для стеклянной и базальтовой ваты различной плотности и длины волны $d \cdot 10^{-4}$ [см].

Рис. 2. – Частотная зависимость волновых параметров стеклянной ваты ($d = 2 \cdot 10^{-4}$ см) от плотности: а) акустическое сопротивление Z_a ; б) постоянная распространения γ .

Рис. 3. – Частотная зависимость волновых параметров от плотности: а) акустическое сопротивление Z_a базальтовой ваты ($d=4\cdot10^{-4}$ см); б) постоянная распространения γ базальтовой ваты ($d = 4\cdot10^{-4}$ см); в) акустическое сопротивление Z_a базальтовой ваты ($d = 8\cdot10^{-4}$ см); г) постоянная распространения γ базальтовой ваты ($d = 8\cdot10^{-4}$ см); г) постоянная

Далее проведем исследование влияния плотности ρ при различной толщине пористо-волокнистого материала на коэффициент звукопоглощения α_s, используя результаты лабораторных измерений проведенных в лаборатории НИИСФ, на рисунках 4-5 построим соответствующие графики зависимости.

Рис. 4. Влияние плотности ρ пористо-волокнистого материала на звукопоглощение α_s при толщине: а) – 30 мм; б) – 50 мм.

Как мы видим из графиков на рисунке 4, при увеличении плотности ρ материала при толщине 30 мм происходить значительное увеличение звукопоглощения α_s на средних частотах, что в меньшей степени заметно на высоких и совсем не наблюдается на низких частотах. Мы наблюдаем равномерное увеличение звукопоглощения при увеличении плотности материала при толщине 50 мм, что особенно заметно на высоких частотах.

Для пористо-волокнистых материалов при толщине 100 мм (рис. 5) мы видим высокую эффективность звукопоглощения на низких и высоких частотах для более плотных материалов (60-70 кг/м³), однако на средних частотах менее плотные материалы (30-40 кг/м³) демонстрируют сравнительно лучшие показатели.

При толщине 150 мм материал плотностью 35 кг/м³, показывает лучшие характеристики по сравнению с материалов плотностью 40 кг/м³, однако на частотах свыше 800 Гц ситуация меняется в обратную сторону.

При толщине 200 мм материал плотностью 60 кг/м³ на частотах до 200 Гц, демонстрирует более эффективные показатели по сравнению с материалом плотностью 40 кг/м³, однако далее ситуация меняется в обратную сторону и на всем частотном диапазоне разница составляет около 10%.

Далее проведем исследование влияния толщины слоя пористоволокнистого материала на звукопоглощение α_s, для этого на рисунках 6-7 построим соответствующие графики зависимости.

Рис. 6. Влияние толщины пористо-волокнистого материала на звукопоглощение α_s при плотности: а) – 30 кг/м³; б) – 40 кг/м³; в) – 60 кг/м³.

Рис. 7. Влияние толщины пористо-волокнистого материала на звукопоглощение α_s при плотности: а) – 70 кг/м³; б) – 100 кг/м³.

Исходя из рисунка 6, мы видим, что толщина материала при плотности 30 - 40 кг/м³ оказывает существенное пропорциональное влияние на низких частотах, где с увеличением толщины на 50 мм звукопоглощение α_s увеличивается до 50%, однако на средних частотах разница уже не столь значительна до 5-10%, на высоких частотах разница достигает до 10-20%.

При плотности материалов 70 – 100 кг/м³ (рис. 7) толщина оказывает пропорциональное влияние на звукопоглощение α_s на низких частотах, где с увеличением толщины на каждые 50 мм индекс звукопоглощения α_s пропорционально возрастает до 0,5, в то же время на средних и высоких частотах влияние толщины достигает 10-15%.

Далее проведем исследование влияния исходного сырья пористоволокнистого материала разного производства на звукопоглощение α_s, для этого на рисунке 8 построим соответствующие графики зависимости.

Рис. 8. – Влияние исходного сырья пористо-волокнистого материала на звукопоглощение α_s при плотности 35 кг/м³ ($d = 4 \cdot 10^{-4}$ см) и толщине 50 мм разного производства.

Исходя из графика на рисунке 8, мы можем сделать вывод, что на средних и высоких частотах плиты из стеклянной и базальтовой ваты имеют относительно похожие показатели звукопоглощения α_s , однако на низких частотах материалы из базальтовой ваты показывают большую эффективность (до 2 раз) в отдельных полосах частот по сравнению со стеклянной ватой, что влияет на эффективность отдельных конструкций [11].

Заключение

настоящей работе проведено теоретическое и лабораторное В физико-механических ΠBM. исследование волновых параметров И Обнаружена корреляционная зависимость между сопротивлением воздухопроницанию образцов – с повышением плотности материала, увеличивается сопротивление воздухопроницанию. Также следует отметить, что имеется сходная тенденция с воздухопроницаемостью между образцами

из стеклянной и каменной ваты. Установлены частотные зависимости акустического сопротивления Z_a и постоянной распространения γ от сырья и плотности материала. Установлен ряд зависимостей между толщиной, плотностью, исходным сырьем материала и его КЗП α_s .

Литература

1. Герасимов А. И. Звукоизоляционные и звукопоглощающие материалы и их применение в строительстве // Academia. Архитектура и строительство. 2009. №5, с. 209-215.

2. Telichenko V., Benuzh A., Rud N., Vasilyev M., Kanev N.; Indoor and outdoor acoustic comfort for healthy and sustainable living environment design // AIP Conference Proceedings. 2023, pp. 34-47. URL: doi.org/10.1063/5.0143456.

3. Радоуцкий В.Ю., Шульженко В.Н. Характеристика звукоизоляционных строительных материалов // Вестник БГТУ имени В. Г. Шухова. 2016. №5, с. 64-66. URL: cyberleninka.ru/article/n/harakteristika-zvukoizolyatsionnyh-stroitelnyhmaterialov.

4. Осипов Л.Г., Бобылев В.Н., Борисов Л.А.. Звукоизоляция и звукопоглощение: учебное пособие для вузов / -М. : АСТ: Астрель, 2004. – 450 с.

5. Никифоров Н. А., Комкин А. И. Определение структурного фактора волокнистых металлических звукопоглощающих материалов // Известия вузов. Машиностроение. 2011. №8, с. 35-43.

 Иноземцев А. А. Сопротивление упруго-вязких материалов. – Ленинград: Стройиздат. 1966. - 168 с.

7. Волощенко А.П., Тарасов С.П. Исследование неоднородных волн вблизи границ раздела сред // Инженерный вестник Дона. 2013. №2. URL: ivdon.ru/ru/magazine/archive/n2y2013/1652.

8. Шашкеев К.А., Шульдешов Е.М., Попков О.В., Краев И.Д., Юрков Г.Ю. Пористые звукопоглощающие материалы (обзор) // Труды ВИАМ. 2016. №6, с.

46-55. URL: cyberleninka.ru/article/n/poristye-zvukopogloschayuschie-materialy-obzor.

9. Герасимов А.И., Васильев М.Д., Светлоруссова А.М. Потери акустической энергии при прохождении звуковой волны через пористо-волокнистый материал // Noise Theory and Practice. 2019. №4, с. 46-52.

10. Руководство по измерению и расчету акустических характеристик звукопоглощающих материалов/НИИ строит, физики — М.: Стройиздат, 1979.—23с.

11. Захаров А.В., Салтыков И.П. Влияние сдвиговых и продольных волн на звукоизоляцию в третьем диапазоне стандартного частотного спектра // Инженерный вестник Дона. 2022. №3. URL: ivdon.ru/ru/magazine/archive/n3y2022/7517.

References

1. Gerasimov A. I. Academia. Arxitektura i stroitel`stvo. 2009. №5, p. 209-215.

2. Telichenko V., Benuzh A., Rud N., Vasilyev M., Kanev N. AIP Conference Proceedings. 2023, pp. 34-47. URL: doi.org/10.1063/5.0143456.

3. Radouczkij V.Yu., Shul`zhenko V.N. Vestnik BGTU imeni V. G. Shuxova. 2016. №5, pp. 64-66. URL: cyberleninka.ru/article/n/harakteristikazvukoizolyatsionnyh-stroitelnyh-materialov.

4. Osipov L.G., Boby`lev V.N., Borisov L.A. Zvukoizolyaciya i zvukopogloshhenie: uchebnoe posobie dlya vuzov [Sound insulation and sound absorption: a textbook for universities]. M.: AST: Astrel`, 2004. 450 p.

5. Nikiforov N. A., Komkin A. I. Izvestiya vuzov. Mashinostroenie. 2011. №8, pp. 35-43.

6. Inozemcev A. A. Soprotivlenie uprugo-vyazkix materialov [Resistance of elastic-viscous materials]. Leningrad: Strojizdat.1966. 168 p.

7. Voloshhenko A.P., Tarasov S.P. Inzhenernyj vestnik Dona. 2013. №2. URL: ivdon.ru/ru/magazine/archive/n2y2013/1652.

8. Shashkeev K.A., Shul`deshov E.M., Popkov O.V., Kraev I.D., Yurkov G.Yu. Trudy VIAM. 2016. №6, pp. 46-55. URL: cyberleninka.ru/article/n/poristye-zvukopogloschayuschie-materialy-obzor.

9. Gerasimov A.I., Vasil'ev M.D., Svetlorussova A.M. Noise Theory and Practice. 2019. №4, pp. 46-52.

10.Rukovodstvo po izmereniyu i raschetu akusticheskix xarakteristik zvukopogloshhayushhix materialov/NII stroit, fiziki [Guide to measuring and calculating the acoustic properties of sound-absorbing materials]. M.: Strojizdat, 1979. 23 p.

11. Zaxarov A.V., Salty`kov I.P. Inzhenernyj vestnik Dona. 2022. №3. URL: ivdon.ru/ru/magazine/archive/n3y2022/7517.