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Аннотация: Разработан метод синтеза антенных решеток с отказами с помощью 
сверточной искусственной нейронной сети с двумя энкодерами. Предложена архитектура 
нейросетевого блока расчёта диаграммы направленности  
по амплитудному распределению токов в раскрыве антенной решётки, позволяющая 
реализовать обучение искусственной нейронной сети без учителя. Получены результаты, 
подтверждающие работоспособность разработанного метода. 
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Антенные решётки (АР) являются наиболее востребованным типом антенных 

систем, поскольку они позволяют управлять формой диаграммы 

направленности (ДН) путём изменения амплитудно-фазового распределения 

(АФР) [1]. Выбор АФР, соответствующих требуемым ДН АР, обычно 

осуществляют на этапе проектирования  

с помощью методов синтеза антенн [2]. Однако, в процессе эксплуатации 

АРб конфигурация АР может меняться, например, вследствие отказов. В 

связи с этим возникает необходимость в повторном решении задач синтеза с 

учетом актуальной конфигурации АР. Кроме того, в ряде случаев требования 

к ДН могут меняться с учетом требований электромагнитной совместимости 

радиосистем.  

Поскольку АФР в раскрыве плоской АР и формируемая ДН связаны 

преобразованием Фурье, то в основе многих методов синтеза лежит идея 

использования обратного преобразования Фурье для получения АФР по 

заданной форме ДН [2]. Недостаток данного подхода состоит в том, что при 

выполнении обратного преобразования Фурье приходится выполнять 

интегрирование диаграммной функции, заданной в бесконечных пределах. 
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При этом одной и той же заданной в «области видимости» антенны ДН 

соответствует бесконечное множество АФР, каждое из которых определяется 

тем, как представлена заданная ДН за пределами области видимости [3]. 

Чтобы избежать необходимости определения заданной ДН  

в бесконечных пределах, вводят дополнительные ограничения на ее 

энергетические характеристики [4]. 

Как правило, подобные методы синтеза антенн являются итерационными. 

Недостаток применения классических методов синтеза антенн [2–4] состоит 

в том, что при изменении конфигурации АР (например, отказов) возникает 

необходимость в повторном применении методов синтеза, которые при 

большом числе каналов и формировании объемных ДН являются достаточно 

громоздкими, требуют больших вычислительных затрат. 

Альтернативой классическим методам синтеза антенн являются методы,  

в основе которых лежит использование искусственных нейронных сетей 

(ИНС) [5,6].  

В соответствии с данными методами на вход ИНС подают вектор, 

соответствующий заданной ДН, а на выходе получают ее параметры: АФР 

или геометрию. Процесс обучения ИНС представляет собой построение 

решающего правила, которое является оптимальным в смысле критерия 

обучения и позволяет связать входную ДН с выходными параметрами 

антенны. В работах [5,6] при синтезе АР использовались полносвязные ИНС, 

что является недостаточным при расширении класса входных ДН. В связи с 

этим представляется актуальной задача разработки методов синтеза АР с 

использованием сверточных ИНС, устойчивых к изменениям конфигурации 

раскрыва и требований к ДН. 

Цель работы 

Снижение уровня боковых лепестков (УБЛ) цифровой АР при наличии 

отказов антенных элементов в полном секторе угловых направлений. 
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Решаемые задачи. 

1. Разработка метода синтеза АР по заданной ДН с учётом отказов АЭ и 

выбор архитектуры ИНС для его реализации. 

2. Проверка работоспособности разработанного метода синтеза АР с учетом 

отказов АЭ и оценка снижения среднего УБЛ при использовании обученной 

ИНС. 

 

Метод синтеза ДН с учётом отказов АЭ и обоснование архитектуры ИНС 

для его реализации 

 

Задачу синтеза антенной решётки сформулируем в виде минимизации 

целевой функции L (функции потерь), которая представляет собой 

среднеквадратическое отклонение между заданной ДН T и расчётной Y в 

векторном виде: 

 

                                                (1) 

 

где K – количество угловых направлений при расчёте ДН. 

Введём декартову систему координат, в которой N-элементная АР лежит 

в плоскости XOY, xn и yn – координаты АЭ, φk и θk – азимут и угол места 

соответствующего углового направления, λ – длина волны. 

Элементы АР могут быть расположены произвольным образом в том смысле, 

что их координаты не обязательно являются узлами прямоугольной  

или гексагональной сетки. Геометрия АР изображена на рисунке 1. Залитыми  

и пустыми кружками показаны активные и отказавшие антенные элементы, 

соответственно. 
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Рис. 1. Геометрия АР 

Для расчёта ДН с помощью множителя решётки [1] требуется задать 

комплекснозначную матрицу наведения Z: 

 

                              (2) 

 

Амплитуда Zn, k равна единице, а фаза соответствует значению фазы n-го АЭ  

для отклонения главного лепестка на k-ое угловое направлению обзора. 

Матрица Z имеет размер N×2K. Обозначим через Mn маску отказов АЭ (1 –

 активный АЭ,  

0 – отказавший АЭ) и через An амплитуду тока возбуждения n-го АЭ. 

Для простоты вычислений будем считать ДН одиночного АЭ из состава АР 

изотропной. В этом случае ДН будет представлять собой [1] действительный 

вектор F длиной K, вычисленный по следующему правилу: 

 

                                       (3) 

 

В формуле (3) вектор Dk – ненормированная комплексная ДН АР по полю. 

При этом, в подавляющем большинстве методов, характерных для ИНС, 
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функции комплексного переменного не используются. Для преодоления 

этого ограничения предлагается использовать в формуле (1) действительные 

вектора Tk и Yk, полученные путём конкатенации действительных и мнимых 

частей ненормированных ДН по полю. 

Для расчёта пробных векторов Yk на этапе обучения ИНС разработан 

нейросетевой блок расчёта ДН по амплитудному распределению (БРАР) и 

координатам АЭ, позволяющий избежать избыточного числа обучаемых 

параметров и связанной 

с их наличием вероятности ошибки предсказания декодера. 

Обучение ИНС с применением БРАР может быть проиллюстрировано блок-

схемой на рисунке 2. 

 

 
 

Рис. 2. Схема обучения ИНС с БРАР 

 

Для расчёта ДН в блоке БРАР можно обойтись одним полносвязным слоем  

с матрицей весов w в виде блочной матрицы [7] размера N×2K, составленной  

из действительной и мнимой частей комплекснозначной матрицы наведения 

Z, элементы которой получены по формуле (4). 
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Описываемая блочная матрица учитывает координаты АЭ и имеет вид: 

 

                                                            (4) 

 

При обучении ИНС матрица весов w не должна изменяться. В связи с этим, 

вычисляемая функция ошибки не влияет на значения коэффициентов БРАР 

(рис. 1). 

Пусть An – значения амплитуд токов на входе БРАР. Тогда на выходе этого 

слоя имеем вектор Y длиной 2K, первая половина которого представляет 

собой действительные части вектора D, а вторая – мнимые части вектора D в 

направлениях φk, θk, в соответствии с выражением: 

 

    (5) 

 

Подчеркнём, что при подстановке значений w в формулу (5) вектор Yk 

представляет собой результат конкатенации действительной и мнимой частей 

комплексного вектора Dk в формуле (3). Здесь следует также отметить, что 

An принимает значения от 0 до 1, поэтому перед полносвязным слоем в 

БРАР реализован слой для нормировки входных данных блока.  

Для синтеза АР с возможностью учёта маски отказов АЭ (МОАЭ)  

в разработанном методе предлагается обучить ИНС на основе архитектуры 

вариационного автокодировщика, от англ. – variational autoencoder (VAE) [8], 

отличающуюся наличием двух входов. 

Стандартная архитектура VAE [8] состоит из 2-х ИНС – энкодер (ИНС, 

кодирующая информацию о входном изображении некоторым вектором) и 



Инженерный вестник Дона, №2(2026) 
ivdon.ru/ru/magazine/archive/n2y2026/10778 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2026 

декодер (ИНС, декодирующая вектор в идентичное или изменённое 

изображение). Схема архитектуры VAE изображена на рисунке 3. 

 

Входное 
изображение

Выходное 
изображениеЭнкодер Декодер

Вектор 
в латентном 

пространстве

Средне-
квадратическое

отклонение

KL-дивергенция

 
 

Рис. 3. Схема архитектуры VAE 

 

Вектор, кодирующий информацию, принадлежит так называемому 

латентному пространству (ЛП). Латентное пространство представляет собой 

многообразие, в котором похожие объекты имеют близкие координаты [8]. 

При обучении VAE используют две различных функции ошибки. Во-первых,  

как и в большинстве случаев обучения ИНС, для проверки соответствия 

выходного и целевого изображений используют среднеквадратическое 

отклонение (1). Во-вторых, используют дополнительную функцию ошибки в 

виде дивергенции (также встречается «расстояние» или «мера») Кульбака-

Лейблера (KL-дивергенция), представляющую собой меру удалённости друг 

от друга двух вероятностных распределений P и Q. 

Вычисление KL-дивергенции используется при обучении ИНС для того, 

чтобы распределение каждой координаты вектора в латентном пространстве 

стремилось к априорному, в качестве которого обычно выбирается 

нормальное.  

Вычисляют KL-дивергенцию по следующей формуле: 
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                                                      (6) 

Другими словами, по формуле (6) вычисляют удаленность получаемых 

распределений каждой координаты вектора ЛП по Кульбаку-Лейблеру  

от нормального распределения с целью регуляризации ЛП, повышения его 

интерпретируемости и пригодности к генерации новых данных.  

Результат расчёта целевой функции используется для расчёта градиентов  

и обновления весов ИНС с помощью методов обратного распространения 

ошибки, таких как «adam» [8]. 

В предлагаемой архитектуре ИНС используется два энкодера, один из них 

кодирует целевую ДН в вектор X(1) латентного пространства размерности L, 

другой кодирует МОАЭ в вектор X(2) того же пространства. По этой 

причине требуется вычислять KL-дивергенцию дважды. Векторы X(1) и X(2) 

суммируются, и сумма подаётся на вход декодера, благодаря чему он 

генерирует амплитудное распределение на основе полной информации о 

требованиях к ДН и об отказах АЭ. 

После этого во время обучения ИНС данные с выхода декодера подаются 

на БРАР для вычисления функции ошибки, а во время работы ИНС данные 

непосредственно используются в качестве амплитудного распределения. 

 Указанное можно проиллюстрировать с помощью рисунка 4.  

Предложенная архитектура содержит следующие слои: 

- свёрточный слой (convolution layer – англ.); 

- Т-свёрточный слой (transposed convolution layer – англ.); 

- полносвязный слой (fully connected layer – англ.); 

- функция активации (leaky ReLU layer – англ.); 

- дискретизатор (sampling layer – англ.). 
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Рис. 4. Схема предлагаемой архитектуры ИНС 

 

К обучаемым параметрам слоя относят матрицу весовых коэффициентов W  

и вектор смещения b. Рассмотрим математическое описание каждого слоя 

как функцию S тензорного аргумента X и обучаемых параметров при их 

наличии. 

В свёрточном слое выполняется свёртка входного тензора при помощи 

фильтров (ядер) размера 3×3×С с шагом s. Обозначим размерность S как 

K×L×D и количество элементов, дополняемых к краям, как p. Тогда 

выражение для выходного тензора свёрточного слоя принимает вид: 

 

                       (7) 

 

В Т-свёрточном слое выполняется обратная операция, входной тензор 

дополняется нулями до нужного размера, и затем выполняется операция 
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свёртки. Таким образом, повышается размерность изображения. В результате 

при помощи задания шага в свёрточных и Т-свёрточных слоях можно 

изменять размерности тензоров без потери информации. Благодаря этим 

особенностям становится возможным кодирование и декодирование данных 

в латентном пространстве. 

В полносвязном слое реализуется функция вектора X длиной C, заданная 

следующей формулой: 

 

                                                               (8) 

 

Как видно из формулы (8), размерность вектора на выходе полносвязного 

слоя определяется размерностью матрицы весовых коэффициентов W. 

В качестве нелинейной функции активации использовалась кусочно-

линейная функция ReLU: 

 

                                           (9) 

 

Наконец, в дискретизаторе выполняется генерация точки в M-мерном 

латентном пространстве на основе случайного вектора ξ с нормальным 

распределением: 

 

                                       (10) 

 

Все эти слои являются стандартными для ИНС и реализованы во многих 

библиотеках на различных языках программирования. Ключевой 

особенностью предлагаемой архитектуры является то, что на этапе обучения 
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ИНС нет необходимости знать истинные амплитудные распределения, 

соответствующие заданным требованиям к форме ДН при фактической 

МОАЭ. Это достигается благодаря использованию модифицированной 

архитектуры VAE с двумя входами, за счёт возможности дискретизации 

вектора в ЛП и разработанного БРАР. В терминологии ИНС это означает 

переход к «обучению без учителя» (от англ. – unsupervised learning).  

Таким образом, предлагаемый метод синтеза АР состоит в применении 

сверточной ИНС, содержащей два энкодера, которые кодируют подаваемые 

на вход ИНС заданную ДН и конфигурацию отказов АР в общее латентное 

пространство.  

На выходе ИНС формируется сигнал, соответствующий вектору АФР, 

который в модуле БРЭР используется для формирования расчетной ДН. 

Обучение ИНС предложено осуществлять по критерию минимума СКО 

формируемой и заданной ДН ‒ стандартному критерию теории синтеза 

антенн. Новизна метода состоит в выбранной архитектуре ИНС. 

 

 

 

Проверка работоспособности разработанного метода синтеза АР с 

учетом отказов АЭ и оценка снижения среднего УБЛ при использовании 

обученной ИНС 

 

Первым шагом проверки работоспособности метода, основанного 

на применении ИНС, является подготовка данных обучающей выборки. С 

этой целью была задана модель АР размера 40×40 с АЭ, расположенными в 

узлах прямоугольной сетки с шагом 0,5λ. Размер АР обусловлен 

компромиссом между объёмом доступной видеопамяти и исследовательским 

интересом к увеличению числа АЭ  
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в составе решётки. Шаг выбирался исходя из требований к сектору углов 

отклонения главного лепестка ДН, при котором отсутствуют дифракционные 

максимумы [1]. 

После построения модели АР выбирался набор амплитудных распределений  

в виде векторов, соответствующих распределению в вертикальной (Wy)  

и горизонтальной (Wx) плоскостях. В проведённых численных 

экспериментах этот набор содержал непараметрические оконные функции 

(окна Бартлетта, Блэкмэна, Хэмминга, Ханна и другие) и параметрические 

(окна Тьюки, Тейлора, Кайзера, Гаусса, Чебышева) с различными 

параметрами [7]. 

Разнообразие оконных функций требовалось для обеспечения разнообразия 

форм ДН по уровню боковых лепестков, коэффициента усиления и ширине 

главного лепестка. Амплитудное распределение во всей АР A вычислялось 

затем как внешнее произведение каждого Wx с каждым Wy. 

На втором шаге для каждого A вычислялась величина D по формуле (3) на 

сетке углов [-90º, 90º] с шагом 1º. Шаг угловой сетки выбирался таким 

образом, чтобы он не превышал половины ширины главного лепестка ДН. В 

результате размер вектора D составил 912 = 8281. 

Затем полученные векторы D сохранялись на ПЗУ. Всего было получено по 

603 вектора распределения длиной 40 для каждой плоскости, и, как нетрудно 

заметить, объем обучающей выборки составил 6032 = 363609 ДН в 

комплексном виде.  

Для подачи на вход ИНС модули векторов D длиной 8281 преобразовывались  

к размеру 91×91, переводились в дБ и единообразно масштабировались 

таким образом, чтобы обеспечить наибольшую контрастность входных 

изображений.  

Для вычисления функции ошибки на выходе ИНС комплексные векторы D  

не претерпевали преобразование размера, но отдельно записывались 
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действительные и мнимые части для соответствия величине T1×16562 в 

формуле (). 

Формирование МОАЭ выполнялось не на этапе создания обучающей 

выборки, а непосредственно - при загрузке входных данных при обучении 

ИНС. При каждом вызове функции считывания входных данных во время 

обучения случайным образом генерировалась матрица с размером, 

идентичным размеру матрицы амплитудного распределения, и заполненная 

значениями 0 – неактивный и 1 – активный. Вероятность появления 

неактивного АЭ в матрице задавалась случайной величиной с равномерным 

распределением в диапазоне от 0% до 15% от общего числа каналов. 

После обучения ИНС выполнялся анализ полученных результатов, для этого  

из тестовой выборки последовательно выбирались образцы данных, 

представляющие собой пару: амплитудное распределение и соответствующая 

ему ДН. Здесь и далее будем называть эту ДН целевой, а распределение 

исходным. 

Далее, аналогично тому, как это делалось на этапе обучения ИНС, 

формировалась случайная маска отказов. На вход ИНС подавалась целевая 

ДН и МОАЭ. Таким образом, были получены амплитудные распределения, 

подобранные с помощью ИНС (АРИНС). Параллельно с этим по формулам 

вычислялась ДН, соответствующая исходному распределению с учётом 

МОАЭ без какой-либо коррекции. Назовём её диаграммой направленности с 

учётом отказов антенных элементов (ДНОАЭ).  

Для трёх полученных ДН для каждого образца данных вычислялось также 

среднее арифметическое значение уровня боковых лепестков в различных 

сечениях. Угол ориентации сечения задавался таким образом, что значения 0º 

и 90º соответствовали главным плоскостям ДН. 

На рисунке 5 представлены распределения амплитуд по раскрыву АР. 

Цветовая шкала подобрана таким образом, чтобы черному цвету 
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соответствовала нулевая амплитуда, а белому – единичная. На рис. 5а 

изображено исходное распределение,  

на основе которого вычислялась целевая ДН. На рис. 5б. представлена 

МОАЭ. 

На основе исходного распределения с учётом представленной МОАЭ 

вычислялась ДНОАЭ. Наконец, на рис. 5в, изображено распределение, 

полученное в результате синтеза с помощью ИНС. 

 

 
а) б) в) 

 

Рис. 5. Распределение амплитуд по раскрыву АР: а) исходное АР; 

б) МОАЭ; в) результаты синтеза (АРИНС) 

 

Рассмотрим ДН, соответствующие представленным распределениям. Целевая 

ДН изображена на рисунке 6а. Цветовая шкала ограничена сверху 0 дБ для 

повышения контрастности изображений. 

На рисунке 6б изображена ДНОАЭ, уровень боковых лепестков которой 

существенно увеличен из-за наличия множественных отказов элементов. 

На рисунке 6в представлен результат синтеза, а именно ДН, 

соответствующая АРИНС. Можно заметить, что УБЛ существенно снижен, 

по сравнению с ДНОАЭ. 
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На рисунке 6г и рисунке 6д сплошной линией обозначена целевая ДН, 

штриховой – ДНОАЭ, чёрной точечной – ДН соответствующая АРИНС 

в азимутальном и угломестном сечении, соответственно. Как видно из 

рис. 6а−6в, применение ИНС позволяет не только снизить УБЛ в главных 

плоскостях, но и снизить фоновое излучение. В отдельных угловых 

направлениях обеспечивается снижение УБЛ более чем на 15 дБ. 

 

 
а) б) в) 

 
                      г) д) 

 

Рис. 6. Пример результатов синтеза АР: а) целевая ДН; б) ДНОАЭ;  

в) ДН, соответствующая АРИНС; г) и д) сечения ДН в азимутальной и 

угломестной плоскостях соответственно 

 

Рассмотрим теперь результаты синтеза, усреднённые по всей тестовой 

выборке. Результаты сравнения представлены на рисунке 7.  
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Рис. 7.  Средние уровни боковых лепестков в сечениях ДН 

 

Сплошной, штриховой и точечной линиями обозначены значения УБЛ в 

зависимости от угла ориентации сечения ДН γ, усреднённые по 5000 

образцам из тестовой выборки для целевой ДН, ДНОАЭ и ДН на основе АР 

ИНС, соответственно. 

Из рис.7 можно сделать вывод, что благодаря применению ИНС 

осуществляется снижение среднего УБЛ во всех сечениях ДН, а значит, и в 

полном секторе углов. 

В главных плоскостях, которым соответствуют углы ориентации сечения 

γ = 0º и γ = 90º, наблюдается снижение среднего уровня боковых лепестков 

на 0,5 дБ. Наибольшее снижение УБЛ наблюдается для углов ориентации 

сечения γ [40º, 50º] и составляет приблизительно 1 дБ. 

 

Выводы 

 



Инженерный вестник Дона, №2(2026) 
ivdon.ru/ru/magazine/archive/n2y2026/10778 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2026 

1. Разработанный метод синтеза антенной решётки с отказами элементов  

с помощью искусственной нейронной сети отличается от известных 

архитектурой ИНС, основанной на нейросетевом вариационном 

автокодировщике с двумя входами, способом обучения с неразмеченной 

обучающей выборкой, наличием разработанного блока расчёта диаграммы 

направленности по АФР в раскрыве.  

2. Проверка работоспособности метода показывает, что разработанный метод 

позволяет снизить уровень боковых лепестков диаграммы направленности 

антенной решётки при наличии отказов антенных элементов в полном 

секторе углов 

на 0,5–1 дБ и более 15 дБ в отдельных угловых направлениях. 
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