Применение методов машинного обучения для классификации дефектов маслонаполненных трансформаторов
Аннотация
Дата поступления статьи: 04.11.2025В работе рассматривается задача классификации разрядных и тепловых дефектов силовых трансформаторов по данным хроматографического анализа растворенных газов, для чего сформировано расширенное признаковое пространство на основе концентраций ключевых газов и диагностических отношений согласно стандарту международной электротехнической комиссии МЭК 60599. Проведено сравнение различных методов машинного обучения, среди которых наилучшие результаты показал алгоритм случайный лес, обеспечивший максимальную точность и устойчивость классификации. Разработанный классификатор дополняет существующую систему поддержки принятия решений, обеспечивая автоматическую идентификацию природы дефектов на основе хроматографического анализа растворенных газов. Результаты исследования демонстрируют эффективность методов искусственного интеллекта в повышении надежности диагностики трансформаторного оборудования.
Ключевые слова: силовой трансформатор, хроматографический анализ растворенных газов, диагностика дефектов, частичный разряд, автоматизированное машинное обучение, ансамблевые методы, случайный лес, экстра-деревья