×

Вы используете устаревший браузер Internet Explorer. Некоторые функции сайта им не поддерживаются.

Рекомендуем установить один из следующих браузеров: Firefox, Opera или Chrome.

Контактная информация

+7-863-218-40-00 доб.200-80
ivdon@ivdon.ru

Модификация метода Прони при приеме сигналов векторно-скалярной антенной

Аннотация

Т.Н. Ларина, Г.М. Глебова, Е.В. Винник

Приводится алгоритм, позволяющий применять метод Прони для оценки параметров шумящих источников с использованием векторно-скалярной приемной антенны. Помехоустойчивость предложенного алгоритма достаточно высока, так как измеренные компоненты акустического поля не содержат шумовой составляющей.

Ключевые слова: метод Прони, векторно-скалярная антенна, динамический шум моря, ковариация, поток мощности

05.13.18 - Математическое моделирование, численные методы и комплексы программ

Модификация  метода Прони при приеме сигналов векторно-скалярной антенной

Т.Н. Ларина, Г.М. Глебова,  Е.В. Винник

Ростовский государственный строительный университет,

Научно-исследовательский институт физики Южного федерального университета,

г. Ростов-на-Дону

  Хорошо известный параметрический метод Прони является методом восстановления квазиполинома по конечному числу его значений на равномерной сетке временных или пространственных  отсчетов [1-3].  Метод Прони использует представление наблюдаемого процесса в виде комплексного экспоненциального ряда. Метод позволяет по отсчетам сигнала найти параметры этих комплексных экспонент, что, в свою очередь, дает возможность записать выражение для спектральной или пространственной плотности исследуемого сигнала. Широкое применение метода Прони стало возможным только в последнее время, поскольку он существенно не линеен и требует больших вычислительных затрат. В прикладных задачах гидроакустики метод применяется как для оценки спектра принимаемых сигналов, так и для определения угловых координат сигналов от локальных источников. Модификация метода для определения параметров коррелированных сигналов или нормальных волн, образующих акустическое поле источника в волноводе предложена в работе [4].

  В данной работе предлагается модификация метода для оценки угловых координат источника с использованием векторно-скалярной антенны. Актуальность такого похода связана с техническими достижениями в области конструирования и создания  векторных приемников, измеряющих колебательную скорость частиц. Кроме того имеется еще одно обстоятельство, которое определяет необходимость разработки и исследования алгоритмов для векторно-скалярных антенн, работающих на фоне шумов моря, а именно,  среднее значение потока мощности шума в горизонтальной плоскости равно нулю. Таким образом, алгоритмы обработки для векторно-скалярных антенн, использующие в своей основе поток мощности, должны обладать повышенной помехоустойчивостью.

В данной работе рассматривается линейная эквидистантная векторно-скалярная антенна, каждый модуль которой содержит приемник давления и два приемника колебательной скорости, оси которых расположены в горизонтальной плоскости. Принимаемые сигналы на -ом модуле ВСА можно представить в виде:

                                                                    (1)

здесь , , и - звуковое давление и проекции колебательной скорости по направлениям и измеряемые -ым приемным модулем. Размерность вектора равна , т.е. величина фактически определяет число приемных элементов в антенне. Для источника, давление которого на -ом модуле равно                

                        ,                                                      (2)

с использованием направляющих косинусов, как весов для компонент колебательной скорости, вектор измеряемых величин можно представить в виде

                         ,,                                        (3)

здесь - мощность сигнала на приемнике давления, - волновое число, - - координаты источника в полярной системе координат,  - пеленг источника отсчитывается от оси Х. В работе [5] теоретически и экспериментально показано, что представление сигналов в виде (3) справедливо как при распространении сигналов в свободном пространстве, так и в волноводе.

Для гауссовых сигналов и шумов с нулевым математическим ожиданием статистика измерений полностью определяется матрицей ковариаций, которая  рассчитывается для заданной модели сигналов и помех как K=U∙U* , символ «*» означает эрмитово сопряжение. Матрица К размером имеет блочно-диагональный вид:

     ,                                      (4)

и представляет собой сумму сигнальной матрицы - и матрицы помех -

                    .                                              (5)  

Каждый из трех диагональных блоков этой матрицы описывает ковариационные зависимости между одноименными компонентами векторно-скалярного поля, а недиагональные блоки – их взаимную ковариацию.   

Метод Прони  является «быстрым» методом решения системы уравнений следующего вида:

                         ,                                  (6)

где   — неизвестные комплексные величины (2∙L<M). Неизвестные находятся как корни полинома  

                               ,                                             (7)  

коэффициенты  которого удовлетворяют системе линейных уравнений

                          (8)

После  нахождения величин ; значения их подставляют в (6) и решают полученную  линейную  систему уравнений относительно.

Применительно к скалярной антенне измеряемые величины - это элементы ковариационной матрицы (4), соответствующие верхнему диагональному блоку матрицы К, значение величины соответствует  мощности l-ого локального источника, , где — разность фаз сигнала  от l-ого локального источника в двух соседних приемных элементах. Угол связан с пространственным углом прихода сигнала от l-ого локального источника соотношением , где — длина волны, — расстояние  между  соседними элементами эквидистантной приемной антенны.

Рассмотрим возможность модификации метода Прони при приеме сигналов  векторно-скалярной антенной. В качестве измеренных величин возьмем элементы двух подматриц  матрицы :   и , элементы которых обозначим и , соответственно. Выражение (6) преобразуется к виду

.        (9)

Введем обозначения:

                                                                  и  

тогда  (9) можно представить в виде, идентичном (7), для которого применима схема нахождения неизвестных параметров сигналов по методу Прони

.                             (10)

Поскольку  значения коэффициентов , можно определить как из системы уравнений для   так и для , то в общем случае для определения целесообразно составить совместную переопределенную систему уравнений, которую  решают методом наименьших квадратов.     Совместное использование измерений повышает  точность определения коэффициентов при работе  в  реальных условиях, характеризующихся  наличием шумов,    конечным временем наблюдения и ограниченными размерами приемной антенны.   По  коэффициентам , составляют полином (7) и находят корни . Значения   подставляют в системы уравнений (9) и определяют и . А затем по найденным значениям  , и оценивают  искомые параметры сигналов от локальных источников: фазовые углы и мощность сигналов

                                       .                         (11)

Преимущество использования подматриц, измеряющих поток мощности в горизонтальной плоскости очевидно, так как среднее значение потока мощности динамического шума  моря в данном случае равно нулю. В то время как для матриц вида , и шум присутствует как на диагональных элементах матрицы, так и недиагональных, поскольку эти компоненты поля коррелированны по пространству. В дальнейшем необходимо детально исследовать данный метод с точки зрения оптимальности его математической реализации, а также потенциальной устойчивости к флуктуациям шумов моря и пространственной неоднородности,  обусловленной дальним судоходством, ветровым волнением, береговым прибоем  и прочими факторами.

Литература

1. Prony G.R.B. Essai experemenal et analytique: sur les lois de la dilitabilite de fluids elastques et sur celles de la force expanslve de la vapeure de l’eau et la vapeure de l’alkool, a differentes temperatures. //J. de L’Ecole Polytechnique. –1795. – T.1. –24-76.

2. Марпл С.П. Цифровой спектральный анализ и его приложения. –М. –Мир. –1990.

3. Backer H.P. Cjmparison of FFT and Prony algorithm for bearing estimation of narrow-band signals in a realistic ocean environment. // – JASA. – Mar. – 1977. – V.61. – P. 756-762.

4. Гительсон В.С., Глебова Г.М., Кузнецов Г.Н. Определение параметров коррелированных сигналов с использованием метода Прони. // Фкустический журнал.  – 1988. – Т.XXXIV. – 1. – 170-172/

           5. Гордиенко В.А. Векторно-фазовые методы в акустике. –М.: –ФИЗМАТЛИТ, –2007. – 480 с.