×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

Challenges in Named Entity Recognition for Russian-Language Datasets

Abstract

Challenges in Named Entity Recognition for Russian-Language Datasets

Kalazhokov Z.Kh., Andriyanov N.A.

Incoming article date: 13.07.2025

This article discusses the implementation features of named entity recognition models. In the course of the work, a number of experiments were conducted with both traditional models and well-known neural network architectures, a hybrid model, the features of the results, their comparison and possible explanations are considered. In particular, it is shown that a hybrid model with the addition of a bidirectional long short-term memory can give better results than the basic bidirectional representation model based on transformers. It is also shown that, improved by adding a thinning layer for regularization, a weighted loss function and a linear classifier on top of the outputs, a bidirectional representation model based on transformers can give high metric values. For clarity, the work provides graphs of model training and tables with metrics for comparison. In the process of work, conclusions and recommendations were formed.

Keywords: text analysis, artificial intelligence, named entity recognition, neural networks, deep learning, machine learning