×

Вы используете устаревший браузер Internet Explorer. Некоторые функции сайта им не поддерживаются.

Рекомендуем установить один из следующих браузеров: Firefox, Opera или Chrome.

Контактная информация

8 908 511 35 70
ivdon3@bk.ru

Сравнительный анализ производительности библиотек LPSolve, Microsoft Solver Foundation и Google OR-Tools на примере задачи линейно-булева программирования большой размерности

Аннотация

Носков С.И., Медведев А.П., Середкин С.П.

Дата поступления статьи: 20.10.2025

В статье представлен сравнительный анализ производительности трех программ-решателей (на базе библиотек LPSolve, Microsoft Solver Foundation и Google OR-Tools) при решении задачи линейно-булева программирования большой размерности. Исследование проводилось на примере задачи идентификации параметров однородной вложенной кусочно-линейной регрессии первого типа. Авторы разработали методику тестирования, включающую генерацию тестовых данных, выбор аппаратных платформ и определение ключевых метрик производительности. Результаты показали, что Google OR-Tools (особенно решатель SCIP) демонстрирует наилучшую производительность, превосходя аналоги в 2-3 раза. Microsoft Solver Foundation показал стабильные результаты, а LPSolve IDE оказался наименее производительным, но наиболее простым в использовании. Все решатели обеспечили сопоставимую точность решения. На основе проведенного анализа сформулированы рекомендации по выбору решателя в зависимости от требований к производительности и условий интеграции. Статья представляет практическую ценность для специалистов, работающих с оптимизационными задачами, и исследователей в области математического моделирования.

Ключевые слова: регрессионная модель, однородная вложенная кусочно-линейная регрессия, оценивание параметров, метод наименьших модулей, задача линейно-булева программирования, индексное множество, сравнительный анализ, программные решатели, производительность алгоритмов

1.2.2 - Математическое моделирование, численные методы и комплексы программ

2.3.1 - Системный анализ, управление и обработка информации