You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.


+7 961 270-60-01

  • Solid solutions with a mesostructure based on indium arsenide-bismuthide

    The paper studies the liquid-phase epitaxy processes of a new material of infrared optoelectronics - indium arsenide doped with bismuth using a stepwise thermal field. An analysis of the phase equilibrium during the growth of a solid solution is carried out. The possibility of the formation of a mesostructure (modulation of the composition along the growth coordinate) is shown. The problems of defect formation in composite layers grown from a melt are considered. Ways of decreasing the dislocations density in gradient layers are discussed. A relatively simple method for controlling the thermal field of temperature in the crystallization zone and a new technological procedure for the sequential crystallization of solid solutions with a mesostructure have been developed.

    Keywords: solid solutions, liquid-phase epitaxy, indium arsenide, mesostructure, stepwise thermal field, dislocation generation

  • Analysis of the zonal structure and physicochemical properties of the graphene-manganese heterostructure

    In this work, we simulated the graphene-MnO composite structure based on minimizing the electron density functional. The analysis of the processes of rearrangement of the interface surface SLG (monolayer of graphene) - MnО (111). In this case, the interface was subjected to hydrogenation. The distribution of the effective charge on graphene is investigated. A decrease in the work function of the charge carriers during hydrogenation of the interface is established.

    Keywords: effective charge, graphene, passivated surface, density functional, interface, work function, energy gap, band structure