×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Visualization of scientific data using interpolation methods and the NVIDIA IndeX plugin in the ParaView software

    The paper presents a solution to the problem of accelerating the process of visualizing the results of numerical simulation. The volumes of such data can be very large and the development of tools to speed up the process of analyzing modeling results is an urgent task. This article proposes a solution to the problem based on the development of a set of programs that automate the process of processing large-volume scientific data of the same type to create high-quality visualizations of the results of numerical modeling. The results are presented using the example of solving problems in astrophysics, but the proposed methodology can be quite easily applied to other subject areas in which models based on the dynamics of particle systems are used. The research described in the work is devoted to solving issues related to converting data obtained from numerical modeling into a format that can be read by the ParaView softwart, which implements many methods that allow obtaining very high-quality visualization. The work also describes the process of automating batch processing of a large amount of data that has the same structure, presents the results of an analysis of the acceleration of the visualization process when using the NVIDIA IndeX plug-in, and considers the possibility of improving the quality of visualization results when applying Delaunay triangulation to the original data.

    Keywords: data visualization, Delaunay triangulation, rendering acceleration, ParaView, NVIDIA IndeX, VTK

  • Informational database model for accounting of the teachers workload of an educational organization

    This paper presents an information model of a relational database developed by the authors, designed to take into account the teachers workload of an educational organization. The identification of the subject area entities, their decomposition and the relationships identification between them are carried out. The constructed database model was brought to the Boyes - Codd normal form. Based on the designed database schema, its physical implementation and filling with test data was carried out. The results of test queries showed the developed model adequacy and the its practical applicationp ossibility. It is currently in trial operation at the Department of Information Systems and Computer Modeling, Volgograd State University. With minimal changes, the developed database schema can be applied to account for the teachers workload in various educational organizations.

    Keywords: database, information modeling, "entity-relationship" diagram, decomposition, information system, educational organization

  • Phonon properties of hydrogenated carbon nanofilms

    In this work, the phonon format of graphane nanoribbons is calculated in the Hamiltonian formulaism. The geometric model is presented in the form of a graphene plane with hydrogen atoms attached to it. The unit cell of graphane contains two carbon atoms from solid graphene and two carbon atoms. The curvature of the graphene plane as a result of attachment to hydrogen atoms and hybridization of the outer electron orbitals of carbon atoms from sp2 to sp3, as well as the interaction between hydrogen atoms, are not taken into account. Analysis of the obtained phonon spectra shows that, for any type and width of graphane nanoribbons, there is a gap between acoustic and optical vibrational modes, in contrast to graphene, which can serve as an indicator for a given structure. Also, for the material under study, the values ​​of the speed of sound and the Debye temperature were calculated.

    Keywords: graphene, graphane, nanoribbon, unit cell, vibrational spectrum, dispersion equation

  • Abstracts

    `

    Keywords: