You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.


+7 961 270-60-01

  • Analysis of theoretical and real reinforcement of the monolithic slab in different variants of seismic action

    In this article the comparative analysis of reinforcement of monolithic reinforced concrete plate under various conditions of calculation is made: without seismic actions, with design earthquake and with maximum design earthquake. It was found that taking into account the seismicity of 9 points without the use of methods of active seismic protection leads to an increase reinforcement to 28 % when taking into account the design earthquake and 81 % when calculating the maximum design earthquake. In addition, the analysis of the tool "Consumption of concrete and reinforcement" in the Lira-SAPR is made. The correction factor for the transition from theoretical to real reinforcement was obtained: it ranged from 2.4 to 3.0

    Keywords: seismic impact, Lira-SAPR, maximum design earthquake calculation, frame calculation, slab, reinforced concrete, specific consumption of reinforcement

  • Simulation of wave processes in a wall structure with a defect in the form of a crack

    The problem of identification of defects in the construction in the form of a wall element is considered. Numerical simulation of the structure is carried out in the Ansys finite element complex. The investigated model of a wall structure has a defect in the form of a through crack, of a certain length. The edges of the cracks do not interact with each other. The excitation of the structure under pulsed loading is considered. Wave field displacements at control points are analyzed. Identified signs of identification of crack-like defect.

    Keywords: numerical modeling, wall element, defect, crack, identification, finite element modeling, dynamic analysis, oscillations, displacement wave field