×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

• ## The efficiency evaluation of stabilization circuits of operation modes of the input stages of the differential and multidifferential operational amplifiers under the influence of ionizing radiation and temperature. Part 1. Voltage feedback

The design of radiation-hardened circuits the use of special technologies and the use of additional circuit techniques. The efficiency of using these methods to improve the scheme qualitative indicators can be assessed by some evaluation. The paper presents the efficiency evaluation method of special voltage feedbacks application in dynamic loads of the classical differential stages. The stages with dynamic loads are apply, for example, in the schemes of differential and multidifferential operational amplifiers. The purpose of the introduction of these feedbacks is the reducing of the effect of transistors low-signal parameters instability under the influence of destabilizing factors (radiation and temperature). For the organization of feedback circuits in the structure of dynamic loads, additional voltage amplifiers based on transistors are introduced into the circuit. It is shown that this approach can increase the output resistance of the dynamic load and increase the gain coefficient of the differential stage under the influence of ionizing radiation and temperature. The efficiency evaluation method is based on the construction of a mathematical model of the scheme expressed through low-signal differential h-parameters of scheme transistors. Thus, the calculation of the main qualitative indicators of the scheme can be carried out by mathematical modeling. The obtained simulation results confirm the efficiency of the proposed circuit design.

• ## The efficiency evaluation of stabilization circuits of operation modes of the input stages of the differential and multidifferential operational amplifiers under the influence of ionizing radiation and temperature. Part 2. Current feedback

Keywords: efficiency evaluation, circuit design, differential stage, dynamic load, destabilizing factors, low-signal parameters

• ## Development of the method of planning the path of the mobile autonomous robot in a three dimensional environment based on fuzzy logic

The purpose and objectives of this work is to develop methods of planning the path of the mobile autonomous robots operating in environments with unknown location of obstacles. The result of the article is vague planner travel path of autonomous mobile robots for three-dimensional space (3D environments). The results differ from known analogues structure proposed planner, consisting of two interconnected parts, designed for use in horizontal and vertical planes, context-sensitive coordination method "simple" behavior of the mobile robot, a set of rules governing the method of prevention "jam" in the obstacles.

Keywords: Quad copter, management, uncertainty, decision making, fuzzy logic

The methods and results of designing instrumentation amplifiers multidifferential on two operational amplifiers that significantly reduce the voltage of zero drift circuit and its transfer efficiency of the common-mode voltage. In practical terms, these methods can solve the important task of building a precision analog interface for resistive bridge sensors, which operate over a wide temperature range. Also, it is possible to use multi-bit ADC with a significantly lower reference voltage. Keywords: mixed systems on a chip, instrumentation amplifiers, common-mode signal, multidifferential DU, voltage zero drift, temperature range, multibit ADC.

Keywords: mixed systems on a chip, instrumentation amplifiers, common-mode signal, multidifferential OA, voltage zero drift, temperature range, multibit ADC.

• ## Private and mutual compensation circuits in symmetric stages CMOS operational amplifiers

The paper discusses the features of their own circuits and mutual compensation circuitry in a differential stage in CMOS transistors. It is shown that their composition can significantly increase the differential gain in symmetric cascades with a dynamic load, significantly reduce common mode gain and extend the range of operating frequencies. As an example, the evolution of the basic concept of a symmetric stage and the results of its simulation in Cadence Virtuoso.

Keywords: micro circuitry, structural synthesis, complex-function blocks, a differential stage, a CMOS transistor, system-on-chip

`

Keywords: