An assessment was made of the possibility of obtaining high-strength concrete based on certain materials of SRV. The analysis of the effect on the ultimate strength of concrete in compression for the duration of hardening, the magnitude of the water-cement ratio, and the properties of materials was performed. A technique for selecting efficient materials for the production of high-strength concrete based on an estimate of the specific consumption of cement is given. It is shown that on the basis of materials available in the northern regions of NRW, high-strength concrete with a specific cement consumption of about 6 (kg / m3) / MPa can be obtained. It was concluded that, in the production of high-strength concrete, it is advisable to increase the adhesion of cement stone to coarse aggregate, for example, by introducing active microsilica in the form of rice husk ash into the concrete mix. It has been suggested that it is necessary to study the effect of superplasticizing additives used in SRV on the kinetics of hardening of cements in order to determine the group of additives that have a minimal retarding effect on the growth of concrete strength in the early period
Keywords: specific consumption of cement, high-strength concrete, tensile strength, cement, coarse aggregate, fine aggregate, adhesion of cement stone with aggregate, hardening kinetics
The experience of applying centrifugation as a molding and compacting method has opened new prospects for the production of highly efficient reinforced concrete products. The experience of production of centrifuged power line supports at one of the enterprises of the Socialist Republic of Vietnam is analyzed. The studies aimed at studying the change in the composition of the mixture during centrifugation and the kinetics of the strength of centrifuged concrete were carried out. The dependence of the ultimate strength of centrifuged concrete on compression on the value of B / W after HMT (heat and moisture treatment) and at the age of 3-7 days was studied. Conclusions are made on the correction of the known quantitative regularities of the change in the strength of vibrating concrete from the value of B / W and the porosity, taking into account the heterogeneity of the structure of the centrifuged concrete over the cross section.
Keywords: centrifugation, heavy concrete, concrete mixture, power line supports, additives to concrete, enterprises for the production of reinforced concrete products